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ABSTRACT

We present MusAV, a new public benchmark dataset

for comparative validation of arousal and valence (AV) re-

gression models for audio-based music emotion recogni-

tion. To gather the ground truth, we rely on relative judg-

ments instead of absolute values to simplify the manual

annotation process and improve its consistency. We build

MusAV by gathering comparative annotations of arousal

and valence on pairs of tracks, using track audio previews

and metadata from the Spotify API. The resulting dataset

contains 2,092 track previews covering 1,404 genres, with

pairwise relative AV judgments by 20 annotators and var-

ious subsets of the ground truth based on different levels

of annotation agreement. We demonstrate the use of the

dataset in an example study evaluating nine models for AV

regression that we train based on state-of-the-art audio em-

beddings and three existing datasets of absolute AV anno-

tations. The results on MusAV offer a view of the per-

formance of the models complementary to the metrics ob-

tained during training and provide insights into the impact

of the considered datasets and embeddings on the general-

ization abilities of the models.

1. INTRODUCTION

Audio-based music emotion recognition is a popular task

in music information retrieval (MIR) that has recently

gained more presence in the context of industrial applica-

tions. It is relevant for building systems for navigation of

music collections, music search, exploration, and recom-

mendation, and diverse applications that can benefit from

MIR, such as audio branding or music therapy.

There are two types of approaches to emotion recog-

nition in MIR following research in music psychology

and affective computing [1±3]. The categorical approach

considers different discrete categories of emotions (or

moods 1 ) or their clusters [4, 5] separately. It relies on

1 Even though some researchers distinguish the terms ªemotionº and
ªmoodº, with moods being longer-term perceptions of musical input, we
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taxonomies of descriptive mood tags and is frequently

addressed by research on music classification and auto-

tagging [6±9]. In contrast, the dimensional approach pro-

poses representations on a continuous scale for several di-

mensions [10], allowing for a direct comparison of differ-

ent moods, which is convenient for many applications.

The dimensional approach is based on existing research

in music psychology which proposes two-dimensional or

three-dimensional representations, including arousal (en-

ergy and stimulation), valence (pleasantness and positiv-

ity), and dominance (potency and control) [11] or, alterna-

tively, depth [12] or tension [13], with many representa-

tions inheriting from the circumplex model of emotion by

Russell [14]. In general, the 2D arousal/valence (AV) rep-

resentation is a common model widely adopted in affective

computing in different domains including music.

Various MIR researchers have worked on building

datasets of AV annotations of music and training machine

learning models for their automatic regression from au-

dio [10, 15±21]. These datasets have been created with

different methodologies, music collections, and participat-

ing annotators. However, there is no common benchmark

dataset that could be conveniently used to compare models

proposed by researchers and trained on different datasets.

Existing studies report model performances using dataset

splits without validation of the trained models on exter-

nal datasets, which has been found to be very informa-

tive in other music classification tasks [22±24], provid-

ing insights on the generalization abilities and preventing

overoptimistic conclusions.

In this paper, we propose to establish a common dataset

for complementary evaluation on external data. We de-

scribe our methodology for building such a dataset, taking

into account music genre diversity, and using it for evalu-

ation of AV regression models. In contrast to many previ-

ous studies, we use comparisons between pairs of songs

as ground truth instead of absolute values (coordinates)

within the 2D AV space to make our annotations easier to

gather and potentially more reliable, as suggested by pre-

vious works on relative emotion annotation in music and

other domains [25±28]. In addition, we apply loudness

normalization to avoid bias in arousal annotations [29],

which has not been considered in previous datasets. The

proposed validation of AV emotion recognition models

provides a complementary view on their performance giv-

ing an opportunity to estimate generalization capabilities

will use both terms interchangeably in this paper for simplicity.

650



of the models on a common ground truth.

Following this methodology, we build a dataset based

on audio previews and metadata available via Spotify API

and evaluate a selection of AV regression models based on

state-of-the-art audio embeddings. We analyze annotation

agreement, propose strategies for building refined subsets

of the dataset with different levels of consistency of anno-

tations, and discuss the performance of the AV models.

2. RELATED WORK

Music emotion recognition is challenging because of the

biases in cultural background, generation, genre, and per-

sonality [2, 30±33]. Nevertheless, this task gathered re-

search attention in MIR from early on [34,35] given poten-

tial applications. Table 1 summarizes public AV datasets

previously used in research. They all contain music au-

dio excerpts and crowdsourced explicit arousal/valence an-

notations (absolute values that characterize each track or

comparisons of track pairs) except for the MuSe dataset.

2.1 AV datasets with absolute values

There is a considerable variety of approaches to AV re-

gression [10, 36±38] based in different audio features, in-

cluding MediaEval campaigns in 2013-2015 [39±42]. We

highlight the three most commonly used datasets contain-

ing absolute value annotations:

• EmoMusic [17] has been presented for the MediaEval

2013 Emotion in Music Task [39]. It contains 744 full

audio tracks as well as 45-second excerpts. All audio is

sourced from Free Music Archive (FMA). The excerpts

are manually annotated with AV values characterizing

the overall feel of the tracks as well as dynamic AV val-

ues at different rates, additionally summarized over the

segment length (mean and stdev).

• DEAM [16] contains 1,802 audio excerpts (58 full-

length songs and 1,744 excerpts of 45 seconds). The

audio comes from several sources including FMA, Ja-

mendo, and the MedleyDB dataset. The dataset simi-

larly contains the overall AV values and dynamic values

at a one per second rate and their summary (mean and

stdev). This dataset has been derived from EmoMusic

and used for the MediaEval 2013-2015 Emotion in Mu-

sic Task [42] and in more recent studies [43, 44].

• MuSe [20] provides track-level valence, arousal and

dominance values derived from social tags associated

with music tracks on Last.fm 2 by using a dictionary of

emotional ratings of words [45]. The dataset includes

annotations for 90,408 songs, however the audio is not

directly available. Instead, the tracks are identified by

metadata, including Spotify IDs for 61,630 tracks. Nev-

ertheless, only 41,021 30-second audio previews are cur-

rently accessible via Spotify API. 3

Importantly, the EmoMusic and DEAM datasets are

limited in coverage and they do not represent a large va-

2 https://www.last.fm/
3 As of May 13, 2022.

Dataset # tracks Type Source

EmoMusic [17] 744 ft/exc abs MTurk
DEAM [16] 1,802 ft/exc abs MTurk
MuSe [20] 41,021 exc abs Last.fm tags
MER-TAFFC [37] 900 exc quad manual
CCMED-WCMED [46] 800 exc rel CrowdFlower
EMusic [26] 140 exc rel CrowdFlower

MusAV 2,092 exc rel manual

Table 1. Public music datasets for AV regression and the

proposed MusAV dataset. ft: full tracks, exc: excerpts,

abs: ranged absolute values, quad: quadrants, rel: relative

annotations.

riety of music available on commercial digital music plat-

forms. The MuSe dataset has a significantly larger size

and coverage, including 835 genres, achieved by sampling

Last.fm using a diverse set of mood labels. Yet, its down-

side is that it is possibly noisy due to the tags-to-AV map-

ping. As a compromise, Panda et al. [37] propose to infer

AV annotations from AllMusic 4 emotion tags, but they

only use them to create a balanced annotation pool that

is then manually validated. The resulting dataset (MER-

TAFFC) contains 900 30-second track previews annotated

by four AV emotion quadrants. In our work, we also follow

an automated music preselection approach and prioritize

large genre coverage while keeping the annotations man-

ual. We can then compare AV regression models trained

on EmoMusic, DEAM, and MuSe using our new dataset.

2.2 Relative annotations

Some researchers in affective computing highlighted the

disadvantages of rating-based emotion annotation by abso-

lute values and propose to use relative annotations [27,28].

In MIR this has been considered in few studies. Yang and

Chen [25] propose to gather relative AV annotations and

employ learning-to-rank algorithms to train models pre-

dicting absolute AV values. They discuss the limitations

of absolute value rating-based annotations and show that

relative annotations are significantly easier and have more

within-subject and between-subject reliability. Their an-

notation experiment involved a corpus of 1,240 pop songs

(30-second segments) and 99 annotators with an average of

4.3 annotators per song. However, they considered relative

annotations only for valence and the audio for the dataset

is not publicly available.

The idea of relative AV annotations has been further ex-

plored by Fan et al. for the case of experimental music [26]

(the EMusic dataset) and classical music [46] (CCMED-

WCMED). For the former dataset, they crowdsource pair-

wise track AV comparisons for 140 track segments from 9

genres by 823 annotators gathering up to three annotators

per pair. The latter contains 800 track segments from West-

ern and Chinese classical music with pairwise compar-

isons by 989 annotators. In addition, a similar study pro-

poses relative ground truth for soundscape emotion recog-

nition [47].

4 https://allmusic.com
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3. ANNOTATION APPROACH

We follow a methodology that allows to avoid some of the

limitations related to subjective annotation of arousal and

valence with absolute values and instead consider compar-

ative annotations on pairs of music tracks [25, 26]. Our

main motivations are the following:

• Many practical applications are concerned not with the

absolute AV values of songs, but with rankings songs

according to these values. In such cases, relative annota-

tions are convenient to validate ranking performance.

• For annotators, pairwise comparisons can be easier to

understand and make decisions. They might require less

effort than annotating with ranges of continuous values

or Likert scales, which have more cognitive load [25,48].

• There is evidence that relative annotations have higher

between-subject and within-subject agreement [25, 27].

• There are simple strategies to refine annotations accord-

ing to the agreement between different annotators.

• Model evaluation can be a simple comparison of the

ground-truth ordering of two tracks with the ordering ac-

cording to the predicted AV values for all track pairs.

• Depending on how the models are trained, different

models might predict AV values within different value

ranges, which should be accounted for when comparing

the performance metrics such as RMSE. Relative com-

parisons on pairs of tracks allows using simple common

metrics that are compatible with all models.

To collect the dataset ground truth, we need an annota-

tion tool able to reproduce pairs of music excerpts and col-

lect the user’s input. Such a tool should address potential

sources of bias and simplify and speed up the annotation

process. We define several requisites to accomplish this:

• We are interested in relative judgements about a pair of

tracks (A and B) that can be formulated as the following

question: ªWhich song has more music property Xº. The

following choices are considered: A, B, or same. To min-

imize potential biases toward any of the choices, none of

them should be selected by default.

• It may be difficult to maintain consistency when answer-

ing non-factual questions. Therefore, we consider that

the interface should display multiple pairs in the same

page to give the user an opportunity to improve coher-

ence of their annotations before submitting the page.

• Loudness has a large impact in music perception. Higher

loudness correlates to higher perceived arousal [29]. To

minimize this effect, the annotation tool should include

loudness normalization. Previous studies that proposed

interfaces for AV annotations [16,17,25,26] ignored this

issue and did not include any normalization.

4. THE MUSAV DATASET

We created our dataset following the described methodol-

ogy, using Spotify API as a source for music audio pre-

views and genre metadata. Using Spotify allows us to ac-

cess a wide range of music, while the 30-second previews

it provides are sufficiently long to capture an overall per-

ceived emotion with AV annotations.

4.1 Preparing the annotation pool

We collected a list of 5,716 genres from everynoise.com 5

which corresponds to the genre taxonomy of the Spotify

API 6 and contains broad genres as well as specific sub-

genres. We then used the API’s Search method to se-

lect random tracks for each genre. We generated multi-

ple queries for each genre (using the genre tag, a wildcard

search string starting with a random character, and a ran-

dom market) and picked a random track from the list of the

returned results for each query. This method allowed us to

diversify music coverage and avoid popularity bias, down-

loading 17,574 track previews for 4,386 genres (up to 15

tracks per genre). All audio previews are 30-second long

MP3 files with a 96 kbit/s bitrate. Each preview has a cor-

responding metadata file obtained with the API’s Get Track

method, including artist and album metadata and various

audio analysis features.

We then analyzed the loudness of the audio previews

to discard tracks with atypical levels, computing the inte-

grated loudness in LUFS [49] of each track with the Es-

sentia audio analysis library [50]. Based on the distribu-

tion of the obtained values, we kept tracks within the range

between -20 and -5 LUFS, which represents the range of

healthy loudness levels for the majority of mastered music.

As a result, we reduced our pool to 15,979 tracks by 3,630

genres.

We organized the tracks into triplets with three pairwise

comparisons each, allowing for additional inconsistency

checks according to gathered relations within each triplet.

We randomly assigned the tracks to two types of triplets:

genre-triplets with all tracks sharing the same genre (one

triplet per genre) and global-triplets containing tracks from

various genres (the remaining tracks) to account for a use-

case of distinguishing emotions within the same genre. All

resulting 5,326 triplets contain unique tracks. We ran-

domly split all generated triplets into annotation chunks,

each one containing 100 triplets with 80% being global-

triplets and 20% genre-triplets.

4.2 Annotation tool and process

We implemented a custom tool according to the require-

ments in Section 3. For each pairwise comparison (a

pair), we used the wavsurfer-js 7 player to display a nav-

igable representation of the waveforms. To prevent loud-

ness bias, we normalize the songs to a common level of

-20 LUFS. We computed the normalization factors from

the LUFS values precomputed in the dataset preparation

step, and converted them to linear gain units as expected

by wavsurfer-js.

Our interface formulates two questions: ªWhich song

has more arousal?º and ªWhich song has more va-

5 https://everynoise.com
6 https://developer.spotify.com/documentation/

web-api/reference
7 https://wavesurfer-js.org/
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lence?º. For both questions, the choices are A, B, or same

arousal/valence. The tool shows a configurable number

of pairs on each screen page (6 by default) and a sub-

mit button that stores the answers from the current page

and renders the next one. We present the annotator with

multiple pairs on the same page, as this can facilitate

double-checking decisions made across pairs to minimize

inconsistencies. Additionally, it simplifies navigation of

the annotation interface, reducing the amount of necessary

mouse movements and clicks. Finally, the tool has a page

counter and displays each pair’s ID to facilitate reporting

any possible issues. The annotator outputs one JSON file

per pair containing the answers to the two questions.

Figure 1 depicts the annotation tool. The source code

for the annotation tool is publicly available online. 8 The

tool is distributed as a Docker web application.

Due to the limitations on effort and availability of our

annotators, we have proceeded with 7 annotation chunks

which account to 2,100 tracks assigned to 700 triplets with

2,100 pairwise track comparisons. Overall, we gathered

annotations from 20 participants, including authors’ col-

leagues and students, with a background in music and

technology. Each chunk was presented to three different

annotators. Every annotator was given a single chunk,

with an exception of one annotator who worked with two

chunks. All annotators were instructed about the meaning

of arousal and valence beforehand following their common

definition [16, 42] and were asked to focus on perceived

emotion [51]. Participants were aware of the subjectivity

of the task and we encouraged to provide their subjective

opinion. In total, we gathered 6,255 comparative arousal

and valence judgments on pairs of tracks after discard-

ing 15 pairs that the annotators reported having non-music

tracks (speech) and duplicated tracks. These annotations

involve 2,092 track previews by 1,404 genres.

4.3 Annotation agreement and consistency

By having multiple people annotate the same chunks of

audio, we can measure the agreement between annotators.

Computing ordinal Krippendorff’s alpha, we obtained val-

ues of 0.48 for arousal and 0.39 for valence, which indi-

cates a fair to moderate level of agreement, which is con-

sistent with previous studies [26, 42, 46].

For building our ground truth for arousal and valence,

we defined two types of agreement for pairwise compar-

isons of tracks by three different annotators. If all three

annotators agreed on a pair of tracks with the same an-

swer (A-A-A, B-B-B, or same-same-same) the annotations

for this pair were considered to be in full agreement. If

only two annotators agreed, we checked whether the third

annotator was in a soft (e.g., A-A-same, same-same-A) or

hard (A-A-B or B-B-A) disagreement. In the case of the

former, we considered the annotations for the pair to be in

majority agreement. Table 2 presents the agreement statis-

tics for all gathered annotations.

In addition, we checked whether pairwise comparisons

contradict each other within triplets (that is, whether they

8 https://github.com/MTG/musav-annotator

Agreement Arousal Valence

# pairs % # pairs %

FA+MA 1,448 69.4 1,341 64.3
FA 975 46.8 810 38.8

FA+MA, CT 738 35.4 606 29.1
FA, CT 519 24.9 381 18.3

Table 2. Number and percentage of annotated track pairs

with different levels of annotator agreement and consis-

tency for arousal and valence. FA+MA: pairs with full or

majority agreement. FA: pairs with full agreement. CT:

only pairs belonging to consistent triplets.

are geometrically inconsistent). For example, for three

tracks X , Y , and Z forming a triplet, if X > Y and

Y > Z, but X ≤ Z, such triplet and all its pairs are con-

sidered inconsistent. We considered triplets as consistent

only if all constituent pairs had full or majority agreement

in the annotations and no contradictions have been found.

As a result, we generated different subsets of the anno-

tations, with 69.4% and 64.3% of track pairs having at least

some level of agreement and 24.9% and 18.3% passing the

most strict conditions (pairs with full agreement, belonging

to consistent triplets) for arousal and valence, accordingly.

Finally, as we had two types of triplets, we checked the

effect of genre on the agreement rate: 67% and 61% of

pairs in global-triplets had either full or majority agree-

ment compared to 76% and 75% in the case of genre-

triplets for arousal and valence, accordingly. This observa-

tion revealed that it was slightly easier to reach agreement

on pairs of tracks coming from the same genre than from

different genres.

4.4 Dataset contents

We provide the following contents as part of the dataset,

available online: 9

• Metadata for the entire annotation pool. 10 Each triplet

is identified by a triplet ID and contains track Spotify

IDs, triplet type (global-triplet or genre-triplet) and genre

information.

• Split of the annotation pool into annotation chunks. 11

• Raw comparative arousal and valence annotations on

track pairs by anonymized annotators.

• Processed ground-truth annotations with different levels

of agreement and consistency (full and major agreement

with/without triplet consistency).

• Track audio previews and metadata gathered from the

Spotify API for the annotated chunks. 12

• Dataset metadata statistics (e.g., genre distribution).

• Scripts to reproduce the creation of the dataset.

9 https://mtg.github.io/musav-dataset
10 All annotation metadata is licensed under CC BY-NC-SA 4.0.
11 It is possible to expand the dataset by annotating more chunks.
12 Available under request for non-commercial scientific research pur-

poses only. Any publication of results based on this data must cite Spotify
API as the source of the data.
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Figure 1. Screenshot of the annotation tool.

5. EXPERIMENTS

We demonstrate the dataset in use on the example of eval-

uating AV regression models based on audio embeddings.

5.1 Models

We created AV regression models based on three types of

audio embeddings:

• MusiCNN-MSD (musicnn) is a music auto-tagging

CNN with filter shapes motivated by music domain [52]

trained on a subset of the Million Song Dataset. Its em-

bedding layer has 200 units.

• VGGish (vggish) is a VGG architecture with an embed-

ding layer of 128 units trained on audio from YouTube

videos mapped to general purpose audio labels derived

from their metadata [53]. The embeddings from this

model were previously used for AV regression in com-

bination with support vector regression [46].

• EffNet-Discogs (effnet) is an EfficientNet architecture

trained to predict the music styles tags from Discogs. 13

The model produces 1280-dimensional embeddings and

it is publicly available as part of Essentia models [54]. 14

The embeddings are extracted on short one-, two-, and

three-second audio excerpts for vggish, effnet, and musicnn

models, accordingly. They are then used by the down-

stream regression models that we train. These models pro-

vide arousal-valence inference for each embedding vector,

with a variable batch size with batch normalization. As

Figure 2 depicts, we use a fully connected layer with a lin-

ear activation function, preceded by batch normalization

and dropout. We also apply L1-L2 and L2 regularizers

in the fully connected layer and dropout as regularization

methods.

For training, we used three different datasets: DEAM,

EmoMusic and MuSe, which we selected based on their

music coverage as more appropriate for general use, with

the goal to incorporate the resulting models as part of Es-

13 https://blog.discogs.com/en/

genres-and-styles
14 https://essentia.upf.edu/models.html

Figure 2. Arousal-valence backend model architecture.

sentia [24]. Each of them provides different audio ex-

cerpts (with 30-45 second duration) and arousal-valence

values characterizing the overall emotion of each track.

We extracted the embeddings with the pretrained models

and used them as features. We followed a standard data

splitting and loading strategy used in previous music clas-

sification publications [24]. To generate a train/test split

stratified in terms of AV quadrants, we use Z-score nor-

malization. However, we did not normalize the training

data. The AV value range in all the datasets is from 1 to 9.

Our models operate on short audio chunks and allow

us to generate sequences of AV predictions over time with

a new prediction every 1-3 seconds, depending on the re-

ceptive field of the embedding model used. Therefore, we

compute the average of predictions on chunks to estimate

the overall arousal/valence of a track.

In Table 3, we report Root Mean Square Error (RMSE)

and Coefficient of Determination R
2 (R2) commonly used

for evaluation of regression models [17, 55, 56], obtained

Arousal Valence

R2 RMSE R2 RMSE

deam-effnet 0.404 0.913 0.335 0.909
deam-musicnn 0.417 0.894 0.400 0.818
deam-vggish 0.396 0.963 0.344 0.963

emomusic-effnet 0.420 1.090 0.375 0.948
emomusic-musicnn 0.451 1.030 0.363 0.966
emomusic-vggish 0.429 1.037 0.376 0.973

muse-effnet 0.143 1.148 0.089 1.581
muse-musicnn 0.141 1.320 0.085 2.509
muse-vggish 0.143 1.148 0.085 1.584

Table 3. Evaluation metrics for the AV regression models

on the held-out (testing) sets of the corresponding training

datasets. The best values for each dataset are in bold.
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Arousal Valence

FA+MA FA FA+MA, CT FA, CT FA+MA FA FA+MA, CT FA, CT
# track pairs 1413 950 716 502 1310 787 588 368

deam-effnet 72.28 75.44 72.60 74.84 61.59 63.38 63.91 65.51
deam-musicnn 78.81 81.04 76.92 78.41 59.75 61.98 62.33 62.90
deam-vggish 78.40 82.14 79.33 81.55 62.32 64.86 66.47 67.83
emomusic-effnet 82.57 86.55 84.75 87.61 71.29 75.41 73.77 78.55
emomusic-musicnn 85.61 89.21 84.78 87.63 74.80 78.76 76.53 80.29
emomusic-vggish 86.42 90.30 86.86 89.73 70.81 77.03 74.51 81.16
muse-effnet 59.92 60.99 59.00 62.11 62.14 63.78 61.54 64.35
muse-musicnn 63.96 66.59 64.84 68.55 67.72 70.77 69.03 71.01
muse-vggish 66.34 69.03 64.63 68.00 62.27 66.35 62.50 68.22

Spotify API 83.31 86.67 83.17 85.95 73.44 74.59 77.51 77.68

Table 4. External validation results on the proposed MusAV dataset (the percentage of track pairs with a correctly predicted

ordering). FA+MA: pairs with full or majority agreement. FA: pairs with full agreement. CT: only pairs belonging to

consistent triplets. The highest values are marked in bold. The top three AV models are marked in gray.

on the datasets used for training the models.

5.2 External validation on MusAV

We used our new dataset to validate the performance of

the models. To this end, we assessed whether the ground

truth ordering of track pairs coincided with the ordering

according to the AV values predicted by the models. In

addition, we also evaluated arousal and valence estima-

tions provided by Spotify API and computed from audio

as an additional reference. 15 This reference possibly rep-

resents a common state of the art in industrial systems.

We ensured that our external validation set is independent

of the datasets used for training the models: EmoMusic

and DEAM contain non-commercial music unavailable on

Spotify, while the intersection with MuSe, for which we

also used Spotify track previews, includes 24 tracks that

we filtered out for our evaluation.

For simplicity, we discarded all ground-truth annota-

tions marking two songs as equivalent (13% and 15% of

the ground-truth pairs with full or majority agreement in

the case of arousal and valence, respectively). Thus, we

focused only on examples with clear difference in arousal

or valence. Table 4 presents the accuracy of the models in

terms of the percentage of track pairs with correct ordering.

We report the results on different subsets of the AV ground

truth to demonstrate various evaluation possibilities.

5.3 Discussion

Having a new common ground truth for all models, our

external validation shows the impact of the training dataset

and embeddings.

Remarkably, models trained on the EmoMusic dataset

perform the best for both arousal and valence regression.

This is surprising, given that this dataset is smaller and

less diverse than DEAM, which was derived from Emo-

Music. On the other side, models based on MuSe have

the worst performance in the case of arousal. Even though

MuSe is the largest dataset in terms of size and coverage

of commercially-available music, it appears to be too noisy

15 We consider the "energy" descriptor in the Spotify API as arousal.

to be able to train efficient models for arousal. Notably, it

is the only dataset out of three relying on user-generated

tags instead of explicit AV annotations, and the employed

process for mapping tags to AV values might be inherently

noisier.

Second, given a dataset, the choice of embedding model

also matters. For example, the effnet embeddings trained

on a large music style dataset appear to be inefficient for

emotion recognition. The models based on them are con-

sistently worst in the case of arousal (with all three datasets

used for training) and valence (with EmoMusic and MuSe

used for training). In turn, our validation reveals high per-

formance of the vggish embeddings in many cases, possi-

bly due to their generalization ability which was previously

evidenced in literature [24]. This observation contradicts

the results obtained in the respective held-out sets, where

it did not have a remarkable performance overall.

Finally, in our validation, some of the considered AV

models have performance competitive with an industrial

reference. Still, all of the considered models only achieve

up to 90% accuracy for arousal and 81% for valence. This

is in line with evidence that predicting valence (as well as

its annotation) is generally considered more complex than

arousal [17, 42].

6. CONCLUSIONS

We present a new public dataset of relative AV annotations

for validation of audio-based AV models. To build it, we

employ a methodology that maximizes coverage in terms

of genres to gather our annotation pool and allows to assess

consistency of annotations on triplets of songs. The dataset

is based on audio previews from Spotify API which allows

validating performance on diverse types of commercially-

available music. As an example, we train and evaluate AV

regression models based on three common AV datasets and

three types of pretrained audio embeddings and show how

such a benchmarking can provide valuable complementary

information about model performances. The resulting pre-

trained models are publicly available as part of Essentia

models.
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