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ABSTRACT

The field of Automatic Music Generation has seen signifi-

cant progress thanks to the advent of Deep Learning. How-

ever, most of these results have been produced by uncondi-

tional models, which lack the ability to interact with their

users, not allowing them to guide the generative process

in meaningful and practical ways. Moreover, synthesiz-

ing music that remains coherent across longer timescales

while still capturing the local aspects that make it sound

ªrealisticº or ªhuman-likeº is still challenging. This is due

to the large computational requirements needed to work

with long sequences of data, and also to limitations im-

posed by the training schemes that are often employed. In

this paper, we propose a generative model of symbolic mu-

sic conditioned by data retrieved from human sentiment.

The model is a Transformer-GAN trained with labels that

correspond to different configurations of the valence and

arousal dimensions that quantitatively represent human af-

fective states. We try to tackle both of the problems above

by employing an efficient linear version of Attention and

using a Discriminator both as a tool to improve the overall

quality of the generated music and its ability to follow the

conditioning signals.

1. INTRODUCTION

One of the driving factors behind the human experience

of music is the emotional content that it conveys. Several

works in the area of Musical Information Retrieval (MIR)

have focused on Music emotion recognition, that is, auto-

matic recognition of the perceived emotion of music based

solely on the musical information itself [1]. In this con-

text, emotion is often represented according to the valence

and arousal dimensions originated from to the Russell cir-

cumplex model [2]. While valence expresses how plea-

surable or displeasurable an emotion is, arousal represents

the level of alertness associated with that emotion, going

from relaxed to excited. However, within the realm of

Deep Learning comparatively little research has focused

on reverting this process, that is, instead of predicting the
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affective content of a musical passage, being able to gen-

erate musical pieces that project a desired emotional state.

Deep Neural Networks are now capable of generating

songs that display coherent chord progressions, melodies

and even lyrics [3], despite the fact that these characteris-

tics often do not persist across longer time scales. While

there are several reasons behind this fact, two of them stand

out. Firstly, there are the inherent computational and mem-

ory costs involved in modeling longer sequences of data.

Secondly, the most common technique used to train these

models, teacher forcing or Maximum Likelihood Estima-

tion (MLE) [4], makes them work with data distributions

that are different during training and inference time (real

vs synthetic). This is known as exposure bias [5]. One of

the ways to alleviate this problem is by delegating the task

of judging which samples are good and which are not to a

different neural network that is trained in conjunction with

the generative model. This is the motivation behind the use

of Generative Adversarial Networks (GANs) [6] within the

realm of sequence generation [7].

In this work, we present a generative model of mu-

sic capable of synthesizing songs conditioned by values

of valence and arousal that correspond to perceived sen-

timent [2]. The ability of automatically generating mu-

sic that follows a specific pattern of emotions can be in-

teresting in various contexts, e.g. producing soundtracks

to accompany story-driven forms of media such as Video-

Games and Movies, which often use music as a means of

guiding the audience towards a specific emotional state that

suits the narrative. The goal here is to provide users who

may not have the musical background necessary for com-

position a way of translating their perception into songs

that can suit their artistic aspirations.

In an effort to mitigate the shortcomings of teacher

forcing-style training, we complement it with an addi-

tional adversarial signal provided by a Discriminator net-

work. This addition has a positive effect on the generated

samples, and we demonstrate, through evaluations of our

model both via automatic metrics and human feedback,

that the proposed Transformer GAN obtains a performance

that competes with a current state-of-the-art model, even

while having a smaller set of parameters and using a sim-

pler representation of music. To summarise, our contribu-

tions are as following:

• We present a neural network that, up to our knowl-

edge, is the first generative model based on GANs to

produce symbolic music conditioned by sentiment.
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• We show, both through automatic and human eval-

uation, that our model obtains a competitive perfor-

mance with that of a current state-of-the-art model

on the task of music generation conditioned by sen-

timent.

• We show that promising results come from using

Generative Adversarial Networks within the context

of music generation conditioned by sentiment, as our

model obtains a good performance despite having

less parameters, using a simpler symbolic represen-

tation, and, being, up to our knowledge, the first on

this task to be trained via an adversarial scheme.

2. RELATED WORKS

2.1 Generative Adversarial Networks

Generative Adversarial Networks, or simply GANs, con-

sist of a theoretical framework in which two Neural Net-

works, the Generator and the Discriminator, through com-

petition, optimize a model that implicitly approximates a

data distribution by generating samples that try to mimic

the features that it observes on a given set of samples orig-

inating from that distribution. Each of the networks is

trained to optimize an objective function. The objective

of the Discriminator D is to separate the real samples from

those that are created by the Generator G, whose job is

to produce samples that are so similar to those of the real

distribution that the Discriminator is unable to determine

which of them are real and which are fake. This whole

process is equivalent to a min-max game that can be for-

malized by Equation 1.

min
G

max
D

V (D,G) =E
x∼pdata(x)[logD(x)]+

E
z∼pz(z)[log(1−D(G(z)))].

(1)

In the equation above, pdata(x) is the real data distribution,

and pz(z) is a prior on input noise variables that come from

a normal distribution, and which are then mapped to data

space by G, so that the synthetic distribution, pg , can be

learned.

Due to the inherent instability of the adversarial pro-

cess, several works have focused on improving the conver-

gence and the quality of the samples generated by GANs

via new objective functions, regularization and normaliza-

tion techniques, and model architectures. Of particular in-

terest to this work is RSGAN [8], which substitutes the

standard GAN loss for the non-saturating Relativistic Stan-

dard Loss. Here, as the authors put it, the Discriminator

estimates the probability that the given real data is more

realistic than a randomly sampled fake data. Equations 2

and 3 correspond to the objectives for the Discriminator

and the Generator, respectively.

LRSGAN,D =

− E(xr,xf )∼(P,Q)[log(sigmoid(D(xr)−D(xf )))]
(2)

LRSGAN,G =

− E(xr,xf )∼(P,Q)[log(sigmoid(D(xf )−D(xr)))],
(3)

in which P and Q are, in this order, the real and fake disri-

butions.

In order to provide more stability to the training process,

WGAN-GP [9] introduces a Gradient Penalty in the form

of an additional loss that enforces a Lipschitz constraint on

the Discriminator. This loss is expressed in Equation 4:

LGP = Ex̂∼Px̂
[(∥∇x̂Dφ(x̂)∥2 − 1)2] (4)

where x̂ is sampled along straight lines between pairs of

points taken from the real and fake data distributions, and

ϕ are the Discriminator parameters.

One possible strategy that can be used to combat the

effect known as exposure bias [5], characterized by the

disparity between the data available to the network dur-

ing training and inference time when the model is trained

via standard Maximum Likelihood Estimation (MLE), is

the insertion of a Discriminator into the training process

as a tool to guide the Generator. Nevertheless, generating

discrete sequences with GANs is notoriously hard. This is

mostly due to the fact that the outputs of some sequence

models are discretized in a way that prohibits the gradient

of the Discriminator loss to propagate through the Gen-

erator. Several strategies have been proposed to circum-

vent this issue [10±12]. Here, we employ the Gumbel-

Softmax technique presented in [11] and applied to adver-

sarial training in [12]. Mathematically, if we have a cate-

gorical distribution with class probabilities πi, i ∈ i, ..., d,

we can draw samples y from this distribution using:

y = one_hot
(

argmax
i

[gi + log πi]
)

(5)

where each gi, i ∈ i, ..., d is taken from a Gumbel Distribu-

tion with location 0 and scale 1. From this expression, one

can obtain a continuously differentiable approximation of

the categorical distribution parameterized in terms of the

softmax function:

y = softmax((1/τ)(π + g)), (6)

where τ is a temperature parameter that regulates how

close to the categorical (lower τ ) versus to the uniform dis-

tribution (higher τ ) is y. This parameter is annealed from

large values to close to zero during training. Here, we use

the same schedule as in [13], that is, 1/τ = (1/τmin)
n/N ,

where n is the index of the current global optimization, N
is the total number of steps and τmin is a hyperparameter

which we chose to be 10−2.

2.2 Transformers

Shortly after its presentation in 2017, the Transformer [14]

became the most popular architecture in the field of Natural

Language Processing (NLP), and it has also been success-

fully applied to other areas, such as image recognition [15]

and audio [16]. The main reason behind its success is the
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Self-Attention mechanism, which allows it to model rela-

tionships between all elements of a sequence. The mech-

anism takes in matrices Q, K, and V, corresponding, re-

spectively, to Queries, Keys and Values, and calculates a

weighted sum of the values where the coefficients are given

by a similarity function between the queries and the keys.

One of the models developed with the intent of de-

creasing the computational costs associated with the cal-

culation of Attention matrices [17±20] is the Linear Trans-

former [18], which, as the name suggests, employs a ver-

sion of the attention mechanism with computational and

memory requirements that grow linearly with respect to

sequence length (standard Attention has quadratic require-

ments), and is also faster than regular attention. This is

achieved via the substitution of the standard softmax sim-

ilarity score by one that allows the matrix multiplications

necessary for the calculation of the attention matrix to be

factorized in a more efficient way. If that kernel has a fea-

ture representation ϕ(x), one can write the Attention ma-

trix as:

A(Q,K, V )i =

∑N
j=1 ϕ(Qi)

Tϕ(Kj)Vj
∑N

j=1 ϕ(Qi)Tϕ(Kj)
. (7)

With this expression, it is possible to calculate the fac-

tor inside the sum only once, and to reuse it to find all

the queries. Specifically, the authors use the kernel with

a feature map that results in a positive similarity function:

ϕ(x) = elu(x)+1, where elu is the exponential linear func-

tion [21]. In this same work, the authors also discover an

analogy between the Transformer and the RNN. We refer

to [18] for further details on the Linear Transformer.

2.3 Generative Models of Music

As of the writing of this paper, most of the state-of-the

art generative models of symbolic music are Transform-

ers or Transformer-based. Music Transformer [22] uses

relative self-attention [23] to process longer sequences of

data and generate music that exhibits long-term structure.

MuseNet [24] is able to produce multi-track compositions

spanning several musical genres and artists by employing

time, note and structural embeddings that give the model

more context.

Midinet [25] and MuseGAN [26] are GAN-based gen-

erative models of music that use Convolutional Neural

Networks (CNNs) as both the Generator and Discrimina-

tor. In those works, music is represented in the form of

piano-rolls that work analogously to images. Most simi-

lar to our work are [27], where the Discriminator is trained

to judge the content both locally and globally, and [13],

which uses a Transformers-XL [28] as Generator and a

pre-trained BERT [29] as Discriminator, and also employs

the Gumbel-Softmax trick discussed above.

Several works have also explored conditioning musical

generation with emotional content. In [30], human emo-

tions are captured from images of human faces and then

categorized into 7 categories. Then, the researchers try to

generate music based on these emotions. In [31], Biax-

ial LSTM networks are used to produce polyphonic music,

and the generation can be conditioned by emotion via 4 pa-

rameters originating from the valence and arousal dimen-

sions. In [32], the authors translate between the visual and

musical domains via emotions. Specifically, they use neu-

ral networks to extract emotional content from images and

music, and subsequently feed the content originated from

both pieces of data into a network to condition music gen-

eration. Music Fadernets [33] constitute a framework that

can infer high-level feature representations by first mod-

elling their equivalent low-level attributes, which are eas-

ier to quantify. These low-level features are then used

for style transfer across arousal states. In [34], a model

dubbed Bardo Composer is presented as a system to gen-

erate backgorund music for tabletop role-playing games.

This is done through Stochastic Bi-Objective Beam Search

(SBBS), a search algorithm that samples from a distribu-

tion of sequences and selects for one that maximizes for

realism and emotion. Furthermore, [35] uses a genetic al-

gorithm to influence specific LSTM units that learn to en-

code sentiment in a pre-training language modeling stage,

allowing it to steer the passages that it generates towards a

desired affective state. In [36], the authors use pre-defined

mood-tags associated with each chord in a progression to

guide the generative process step-by-step. The EMOPIA

dataset [37] contains musical passages separated into four

quadrants that each corresponds to a combination of pos-

itive or negative arousal and valence. The excerpts on

the dataset are from piano transcriptions of pop songs that

were labeled by its authors. In this same work, the authors

also use a Transformer model that employs the Compound

Word representation [38] to generate songs conditioned by

affective states.

One of the factors that influence the final quality of the

samples generated by models of symbolic music is the rep-

resentation used to train them. For contemporary styles,

like Pop or Hip-Hop, where a rigid metrical grid is often

followed, it is desirable to incorporate data about the rhyth-

mic structure of the songs into the representation. REMI

[39], which stands for revamped MIDI-derived events, is a

beat-based approach to modeling music that encodes this

information through tokens that signal the beginning of a

bar and the passage of each beat, while still maintaining

some flexibility by allowing local tempo changes. More

specifically, there NOTE_ON, NOTE_DURATION, VE-

LOCITY, TEMPO, BAR and BEAT. A NOTE_ON event

indicates the start of a note, NOTE_DURATION corre-

sponds to the duration of that note, and VELOCITY is a

parameter that indicates the intensity with which the keys

on a piano are played, and correlates to the volume of

the note produced. Finally, TEMPO dictates the tempo

of the musical excerpt from the moment the token is pro-

duced forward, and BAR events indicate the start of a new

bar. The Compound-Word Transformer [38] uses a sep-

arate embedding for each type of musical element (pitch,

chord, tempo value, etc.).
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3. METHODS

3.1 Architecture and Loss functions

Both the Generator and Discriminator are Transformers

with linear versions of the Attention Mechanism [18].

Each of the models is composed by 6 Attention blocks.

The Generator has two roles. In the first place, it has

to predict each item of each sequence from the real dataset

based on the previous elements, that is, it has to complete

pieces of already existing sequences. In standard Trans-

former fashion, a lower triangular or look-ahead mask is

applied to the original sequence in order to prevent the

model from seeing its future elements. The second objec-

tive of the network is to generate sequences that are similar

to those of the real set from scratch, that is, without context

from the real dataset, such that these sequences can fool

the Discriminator. These sequences are generated step-by-

step in an autoregressive manner, which is done via the

Transformer-RNN analogy made in [18]. ¨

The Generator is conditioned via special scale and bias

parameters that influence the Layer Normalization [40]

layers existing within the Attention mechanism. There is

one of these couples for each class on the dataset and one

for the unlabeled sequences. Formally, if i, k and c stand,

respectively, for position in the sequence, feature channel

and class label, we have:

s′i,k = γc
k · si,k + βc

k (8)

where s and s′ are input and output sequences, and γ and

β are scale and bias.

The Discriminator takes each sequence as a whole and

tries to determine if it is real or fake. To design this net-

work, we took inspiration from the Visual Transformer

[15], separating the sequences into patches of a certain

length and transforming each patch into a single feature

vector.

Our Discriminator has two outputs. First, there is a sin-

gle feature unit that indicates if the passage originates from

the real or fake datasets and if it exhibits the desired char-

acteristics provided by the conditional signal. To produce

this output, a [CLS] token is concatenated to the input se-

quence, similarly to BERT [29]. Then, the conditional in-

formation is incorporated via an inner product between an

embedding of this information and the [CLS] representa-

tion. This essentially means that the model works as a Pro-

jection Discriminator [41]. The second output is a predic-

tion map where each unit corresponds to a single patch in

the sequence, that is, for every collection of musical sym-

bols with length equal to the patch size, there is a value

predicting whether that patch is real or fake. This tech-

nique, often used in image generating-GANs [42], ensures

that the model prioritizes local structure.

Each of these two outputs serves the purpose of incor-

porating priors about musical structure into our model. A

common way to frame the task of musical generation is

as a language modelling one: each individual symbol is

treated as a word, and these words compose phrases, pe-

riods, and so on. Using this analogy, the goal behind the

proposed local loss is to inform if each particular sentence

in a text is realistic or not, or, translating that to music, if

every short musical idea in the form of a phrase or part of

a phrase is realistic or not. The global prediction unit, on

the other hand, acts as a signal that encapsulates the overall

quality of the sequence and its ability to convey the desired

emotional state, complementing the local prediction map.

The networks are illustrated in Figure 1.

Embedding

Embedding

Condition

FC

FC

Attention Block

Token Sequence

Nx

Pos Embedding

Mx

Output Sequence

(a) Generator

Embedding

Embedding

Condition

Inner Product

Attention 
Block

Input Sequence

Nx

Projection
[CLS]

Embedding 

Positional 
Embedding

FC FC

Local
prediction map

Global
prediction map

(b) Discriminator

Figure 1: Generator and Discriminator. FC stands for

Fully-Connected Layer. N is the number of self-attention

blocks from which the models are made. M represents

the number of autoregressive steps the Generator executes,

that is, the sequence length.

3.2 Datasets

We used two datasets to train our models, mainly as a

means to allow the networks to use a larger training cor-

pus. Both consist only of songs performed on piano. The

AILABS17k dataset [38] contains over 108 hours of piano

covers of pop songs automatically transcribed by a state-of

the art piano transcription model [43] and converted into

MIDI files. The EMOPIA dataset [37] was constructed in
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a similar fashion to the one above, but its songs were af-

terwards labeled by the authors of the dataset according to

perceived sentiment [2]. The clips on this dataset amount

to approximately 11 hours. We used AILABS 17K to allow

the networks to learn a general representation of music in

a larger corpus, while also being trained on a smaller col-

lection of songs that contains annotated data.

3.3 Training

We use the data representation proposed in [39], which

consists of the NOTE_ON, NOTE_DURATION, VELOC-

ITY, TEMPO, BAR and BEAT events described pre-

viously. Before the introduction of the Discriminator,

the Generator was trained until convergence through the

teacher forcing method (26000 steps). This pre-training

stage guaranteed the stability of the adversarial stage that

was to follow [13, 27, 44]. In this stage, the Generator was

trained simultaneously on both datasets, and taking into

consideration the difference in size between these datasets,

to balance the training process, we alternated between op-

timization steps on randomly sampled batches from each

set. The network worked with sequences of length 2048,

corresponding, on average, to 1 minute of content.

For the adversarial stage, we used sequences of size

128. In order to reduce the effects of gradient variance that

are inherent to the sampling process, sequences with length

16 originated from the real set were given to the Generator

such that it could have a starting point to perform gener-

ation [27]. The Discriminator worked with subsequences

of length 16, and the training was done exclusively on the

EMOPIA dataset [37].

The networks were trained via a combination of the

teacher forcing objective plus the RSGAN objective [8]

with gradient penalty [9]. We performed 1 optimization

step of the Discriminator per Generator step, using a learn-

ing rate of 1 · 10−4. In total, 26000 global optimization

steps were performed. The overall objective for the gener-

ator in this training stage is:

LG = LMLE + αLRSGANG-global + βLRSGANG-local, (9)

where Lmle = −Ex∼P [logGθ(x)] (10)

where the factors LRSGANG-global and LRSGANG-local are re-

spectively the global and local GAN losses detailed above,

α and β, which we empirically chose to be equal to 1, are

hyperparameters controlling the relative intensity of each

loss factor, and LMLE is the Maximum Likelihood. The

Discriminator was simply trained with the local and global

RSGAN objectives given previously in Equation 2 plus the

global and local gradient penalties based on Equation 4

and regulated by a hyperparameter λ (which as per [9], we

chose to be 10) . This loss is expressed as Equation 11. An

algorithm outlining the training scheme is available in the

supplementary material.

LD =LRSGAND-global + βLRSGAND-local+

λ(LGP-global + LGP-local).
(11)

4. EXPERIMENTS

We evaluated our models both with respect to the overall

quality of the samples they produce and their ability to gen-

erate songs that convey the conditioning emotional signals.

To achieve this purpose, we used both the automatic evalu-

ation metrics proposed in [26,45] and a set of human eval-

uation metrics to compare our GAN with the system that,

as far as we know, corresponds to a state-of-the-art gen-

erative model of symbolic music conditioned by sentiment

currently available in the literature. Specifically, our model

was compared with the Compound-Word Transformer [38]

variation used by the authors of the EMOPIA article [37]

to generate music conditioned by emotional class. We also

compared our adversarially trained model with a Vanilla

Transformer model that was not trained with the adversar-

ial scheme. This model corresponds to the version of the

generator network obtained after the pretraining was com-

pleted. Code for this work, along with audio samples, are

available at 1 .

For the automatic metrics, we chose Pitch Range (dis-

tance between highest and lowest pitch), Number of Pitch

Classes, and Polyphony (the average number of simultane-

ous notes). These metrics were calculated using the Muspy

library [46]. For each model, we generated 400 samples

(100 for each class) and evaluated these samples with re-

spect to the characteristics above, then averaged the results

to produce the overall model score. The results are pre-

sented in Table 1.

PR NPC POLY

Real Data (EMOPIA) [37] 50.94 8.50 5.60

Baseline [37] 49.76 8.52 4.36

Transformer 48.79 8.65 4.37

Transformer GAN 50.73 9.45 4.43

Table 1: Comparison between the samples generated by

ours and a state-of-art model. PR stands for Pitch Range,

NPC is Number of Pitch Classes and POLY is Polyphony.

The best results are highlighted in bold.

As it can be seen, our model obtains a superior per-

formance than that of the baseline and the pre-trained

model on two of the three metrics. Furthermore, it should

be mentioned that the Generator is significantly smaller

than the baseline, having only 6 Attention layers, while

the latter has 12. To be more precise, the baseline has

∼ 40M parameters, while our generator has ∼ 25M and

our Discriminator has ∼ 27M . Also relevant is the fact

that the representation used to train the baseline, that is,

the Compound-Word representation [38], is more complex

than the REMI representation that we use [39], and has

also been proved to be better than REMI. Since the focus

of our work was to implement the GAN framework within

the context of symbolic music generation conditioned by

sentiment, and given the complexity of this framework, es-

pecially when it is applied to the discrete domain, we chose

to use a simpler representation in order to maintain the fo-

cus of our work on the implementation of the GAN. But as

1 http://github.com/pneves1051/transformers_sentiment
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our results show, adapting it to work within the adversarial

context, which we leave to future work, could bring about

even better results.

Finally, we performed a survey in which participants

were asked to judge the musical excerpts generated by

the models both in terms of their overall quality and their

ability to convey the desired sentiments. Specifically,

participants rated the samples on a 5-point Likert scale

that ranged from very low to very high with respect to

the following characteristics: Human-likeness, Originality,

Structure, Overall Quality, Valence, and Arousal. Details

from each characteristic and the corresponding scale are

given in the supplementary material. The participants were

recruited from the researchers’ online circles. Each of the

participants had to listen to 12 musical excerpts in total,

4 from each model, and within those 4 item groups, one

from each of the 4 emotional classes. Before the test, some

text explaining the basic concepts behind the research was

shown to the participants. In total, 18 individuals partici-

pated in the experiment.

We present the average participants’ scores given to

each model for Human-likeness, Originality, Structure and

Overall Quality in Table 2. These results suggest that both

the proposed Transformer, and the Transformer GAN, are

competitive with a state-of-the-art model with respect to

the four qualitative metrics.

On the next step of the evaluations, we took the par-

ticipants’ answers to the questions related to Valence and

Arousal and compared them to the real emotional labels

provided to the model during the generation process. Fig-

ure 2 illustrates the results of this experiment.
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Figure 2: Results of the experiment where participants

rated musical samples according to their perceptions about

valence and arousal. The acronyms TG, T and CP corre-

spond, respectively, to the Transformer GAN, Transformer

and Compound-Word Transformer Baseline models.

Once again, we find that the models we developed ob-

tain a performance that competes with that of the current

state-of-the-art. By comparing the medians and quartiles

of these boxplots, we can draw several conclusions. Firstly,

all models seem to have more difficulty capturing valence

than they do arousal. This may be an indication that mu-

sical aspects which have a great impact over arousal, such

as velocity and tempo, are more easily understood by neu-

ral networks, while factors which have an impact over va-

lence, such as modality or frequency of harmonic change

[47], are more difficult to model for these systems.

Furthermore, we see that, in general, our models do not

stand behind when compared to the baseline. Between the

three, by observing the boxplots, it seems that while the

Transformer and the Compound-Word baseline sometimes

produce samples that situate themselves more strongly to

the side to which they theoretically pertain (e.g., for the

high valence and low arousal categories), the Transformer

GAN surpasses the simple Transformer due to the fact that

it never situates more than 50% of the excerpts on the in-

correct side of the middle line, which in this case is rep-

resented by the number 3. While the excerpts generated

by the Compound Word Transformer also show this same

characteristic, we see that there is not a strong reason for

us to believe that one stands out in comparison to the other.

Overall, given the superior ratings of the Transformer

GAN respective to the automatic metrics and its compet-

itiveness with a state-of-the art model with respect to the

human evaluations, and given the considerations above

about model size and representation, the Transformer GAN

seems to be a promising model for music generation con-

ditioned by sentiment.

4.1 Conclusion and future work

We introduced a model capable of generating musical ex-

cerpts conditioned by labels that represent perceived emo-

tion. Through the use of MLE pre-training and adversar-

ial training, we guided our model towards understanding

some aspects of the relationship between musical structure

and affect. Our experiments show that both in terms of

quality and the ability to communicate emotion, the sam-

ples generated by the proposed model achieve competitive

results. Furthermore, our work points to several possible

avenues for future research, such as the use of other sym-

bolic representations of music, the development of gener-

ative models conditioned by emotion that work directly on

audio, and further exploration of the use of affective condi-

tioning signals, e.g., using them to guide automatic compo-

sition second-by-second or to automatically generate roy-

alty free music notation based on specific sentiments.

H O S OQ

Baseline [37] 3.32 ± 1.29 2.93 ± 1.13 3.18 ± 1.30 3.49 ± 1.04
Transformer 3.75 ± 1.24 3.22 ± 1.19 3.76 ± 1.14 3.89 ± 1.14
Transformer-GAN 3.56 ± 1.34 3.06 ± 1.21 3.38 ± 1.09 3.44 ± 1.15

Table 2: Results of the Survey where participants were asked to rate the samples generated by several models. The columns

are, respectively, Human-Likeness, Originality, Structure and Overall Quality.
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