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ABSTRACT

The task of identifying melodic lines in polyphonic mu-

sic is a known active research topic in the symbolic and

audio domain. Its importance has attracted the interest of

researchers focusing on Music Information Retrieval and

musicological applications and achieving high results is a

common goal in industrial applications. Distinguishing the

melody from the rest of the material in a written score

can be a challenging task, however improvements have

been reported in recent years using deep learning methods.

In this paper, we present a lightweight deep bidirectional

LSTM model for identifying the most salient melodic line

of a music piece using handcrafted features without requir-

ing the input score to be separated into multiple parts. We

evaluate our model to measure the effectiveness of several

data augmentation techniques and to compare performance

to other state-of-the-art models. We also identify the fea-

tures’ importance and evaluate their incremental contribu-

tion on the model performance using evaluation metrics.

Results on the POP909 dataset show that our model ap-

proximates or outperforms current state of the art mod-

els trained on the same dataset, based on different imple-

mented metrics and observations.

1. INTRODUCTION

The concept of the note-to-note organization of music

naturally evolves to perceiving larger structures such as

phrases and melodic contours. Identifying what a lis-

tener perceives to be the melody in a piece of music and,

more generally, examining the musicological concept of a

melodic line has emerged in recent years as an important

topic in the Music Information Retrieval community [1].

A melodic line incorporates musical properties which

are rich in contextual information such as structure and

rhythm and it embeds expressive characteristics from the

perspective of the composer when constructing a piece as

well as the perspective of the performer interpreting it.

From a musicological point of view, being able to extract

a melodic line with high accuracy can reveal new research
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directions, from analysing a composition style to classify-

ing a performer’s tendencies. In industrial or other research

applications, high accuracy in melody extraction can im-

prove the results of music search or recommendation algo-

rithms as well as music generation systems.

In both audio and symbolic domains, the task of retriev-

ing the notes of the melody from a polyphonic piece is not

trivial. For example, during the act of listening, one may

find it hard to distinguish note intervals from one another.

It may happen that an interval judged as a major third when

heard by itself, is judged as fourth in a separate music con-

text instead [2] (p. 217). During the act of reading a mu-

sic score or rendering it using a single type of timbre, the

note intervals within separate voices might be perceived as

interchangeable. The aforementioned challenges have in-

spired the research on voice extraction, i.e. partitioning the

polyphonic piece into a set of monophonic melodies (more

details in [3] and [4]).

In this paper, we are focusing on the task of identifying

the main melodic line in a symbolic score. Past work on

this specific task can be divided into two broad categories.

The first includes models predicting a melody part from

a multiple-part score input, meaning that a series of notes

have been separated to individual parts and the task is to

predict which part, either globally or in segments, contains

the main melodic line. Most common features used for

this purpose are related to notes pitch, intensity, duration,

as well as the total number of notes among a part. This

type of melody identification is out of scope for this paper,

however we refer to [5±7] for details.

Our approach belongs to the second category that is

to identify the notes that constitute the main melody in

the score without any prior knowledge of separated score

parts. Hence, we process an unsegregated set of notes, as

we believe that this approach give more flexibility on how

it can be used in various applications.

Related work. There is a limited number of previous

work on this matter. One of the first attempts is the skyline

algorithm [8] which keeps the highest note starting at any

time, from all simultaneous note events. The other existing

algorithms can be separated in the way the music is repre-

sented as input. We can pinpoint two main strands. One

handles the music as a piano-roll visualisation, which is a

semantic segmentation where musical scores are treated as

two-dimensional images. Melody extraction systems pre-

sented in [9] and [10] use this type of representation, with

the aim to classify the notes represented as pixels. The
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piano-roll representation is mainly used in deep learning

methods using convolutional neural networks. The other

strand, which our approach belongs to, treats the music

sequentially, representing a series of tokens or low and

mid-level features that best describe the input character-

istics. Recurrent neural network based models employ the

note-sequence representation. In the case of the system

in [11], the input representation constitutes note-to-note

affinity values coming directly from their contextual notes,

constructing a weighted undirected graph, having as edge

weights the corresponding affinity values. In order to ob-

tain a single melody outcome, they employ spectral clus-

tering to obtain one cluster over the learned graph.

The use of features is presented in [12], where each note

is characterised by a set of note properties such as note

dissonance, how close a note is to a note ranked with a

high probability of being a melody note, or properties from

the score metadata such as the musical instrument that a

particular note has been assigned to. In our approach, we

adapt a set of features which contain note information such

as pitch and duration, as well as properties of a note in its

polyphonic context.

A recent approach MIDIBERT [13] adopts the mask

language model training strategy which is largely used in

the field of natural language processing. The model ac-

cepts an input representation of sequence of tokens where

each token represents a musical event. By training the

model to reconstruct the masked input sequence, the trans-

former model can learn a latent representation of symbolic

music. The experiment results show that with such pre-

training, the model can be easily fine-tuned for other down

stream tasks such as melody extraction.

Previous work reports high results in melody extrac-

tion accuracy, especially on recent systems that use deep

learning methods. However, the resources used are either

not publicly available or their use is copyright protected.

Therefore, it is hard to compare and assess results due to

unpublished datasets, different metrics reported and differ-

ent test sets used. Datasets that clearly identify the primary

melodic part from accompaniment are rare. For this publi-

cation, we have used the open-source POP909 dataset [14],

where the salient melody notes have been distinguished.

Pop music has been also used in [6, 9]. Folk music has

been used in [10, 11] and classical in [9, 10]. The system

in [13] adapts POP909 for the task of melody extraction.

Proposed method. The melody extraction model

that we introduce in this paper is a supervised bidirec-

tional Long-Short Term-Memory (biLSTM) model called

LStoM, standing for Large Score to Melody. It re-

ceives a set of computed features as input derived from a

MIDI score and classifies which notes constitute the main

melodic line. We adapted the note events representation as

a set of features in the form inspired by [4].

For our model input, we compute the following fea-

tures for each note in our dataset, as described in Table

1. The first two features, pitch and dur, contain the ba-

sic pitch and duration information of a note, respectively,

where pitch is expressed in a MIDI note number and the

Feature name Description

pitch note pitch (MIDI number)
dur note duration (crotchets)
pitch_dist_below absolute pitch distance (semitones)
pitch_dist_above absolute pitch distance (semitones)
pos_in_bar note onset position in bar (crotchets)
pitch_in_scale note pitch in key scale (boolean)

Table 1. The features that have been selected and com-

puted, along with their description.

duration in a crotchet level. For pitch_dist_below

and pitch_dist_above, we compute the distance

to the pitch of the next (neighbouring) higher or lower

note sounded simultaneously with the note in use.

pos_in_bar records the score beat where the note on-

set is located within the score bar. pitch_in_scale

records whether the note pitch is in the diatonic scale of the

key signature. The features pitch_dist_below and

pitch_dist_above are inspired by the work in [4].

The feature pitch_in_scale is inspired by the work

in [12].

More on the data that we have processed and the model

we have built in Sections 2 and 3 respectively. Section 4

includes a set of experiments and observations to assess the

model’s capabilities. Finally, in Section 5 we summarise

our findings and suggest potential future directions.

2. DATA DETAILS

For our experiments, we have used the MIDI files from

POP909 dataset [14]. This dataset includes piano arrange-

ments of Chinese pop songs created by musicians playing

on a MIDI keyboard, and the melody part has been identi-

fied by manually transcribing the lead vocal melody. The

scores include the remaining parts "bridge" and "accompa-

niment" which we merge and consider as a single accom-

paniment part throughout our experiments.

The scores are rich in expressive characteristics, such as

the note timing and duration. In our processing, we have

used the dataset metadata information regarding the beats

and the key. For our purpose, we have pre-processed the

MIDI files, to rectify the following dysfunctions. Many

scores include a time signature of ‘1/4’, so we have up-

dated the time signature by considering the meter infor-

mation from the audio beat metadata. Time signatures of

ª2/4" and ª2/2" have been mapped to ª4/4". Also, many

scores include a misalignment in the downbeat level, so we

have fixed the start time of the piece to reduce this issue.

As mentioned before, the scores are performative and

this means that they accommodate fine details or impre-

cision in timing. In order to setup our model, we have

created a time-grid of the notes’ onset and duration that

is flexible enough to keep performative characteristics and

strict enough to not explode the dimensions of possible val-

ues which would be hard to be trainable later on. The time-

grid is setup to align onset times in triplets resolution. The

note durations are adjusted to the minimum between the

distance of current note onset and next note onset, and the

current note duration in semiquaver resolution.
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The key information is extracted from the dataset meta-

data. When a song has more than one key signatures re-

ported, we consider a single key signature extracted from

the music21 key detection algorithm [15]. At the inference

level of our model, we apply the latter method on the test

score input. We do not apply any type of post-processing

on the extracted melody. Also, we automatically merge all

notes into a single MIDI part per piece, keeping the infor-

mation of a note being a melody one as ground truth.

To facilitate a fair comparison of the models in our

experiments, we use the same dataset subset and train-

validation-test set split as in [13], which results to 865

songs. The steps above give us the amount of 1,408,056

notes, from which 19.8% are melody notes.

3. MODEL DETAILS

In this section, we present the details of our model archi-

tecture (3.1), the details about our training setup (3.2), as

well as the metrics we have established (3.3). We have

released the code of the model as open-source 1 .

3.1 Architecture

We implement a deep bidirectional LSTM architecture

(biLSTM) [16] for our model, which is a type of Re-

current Neural Network (RNN). In our implementation,

the biLSTM model has been setup after implementing a

grid-search on the model hyper-parameters, using hyper-

opt [17]. After this process, the model results in having

6 layers, with hidden size of 140, followed by a forward

layer. The Adam optimizer is used with a start learning

rate of 0.001. We identified the set of hyper-parameters

that produce the highest melody F-measure score (metric

described in the following Section 3.3).

One characteristic of our dataset is the imbalance of the

data labels (i.e. the two classification classes), meaning

that non-melody notes outnumber the melody ones. To

overcome this issue in our classification task, we adopt the

focal loss [18] as the loss function for the model, which is

defined as:

FL(pt) = −at(1− pt)
γ log(pt), (1)

where pt denotes the model’s estimated probability for an

input to be classified to class t and at ∈ [0, 1] is a weight-

ing factor for the imbalanced classes which balances the

importance of positive and negative examples. The term

(1−pt)
γ acts as a modulating factor with γ controlling the

rate at which over-weighted examples are down-weighted.

We set at = 0.25 and γ = 2.

3.2 Training setup

The train-validation-test sets that we used from [13] con-

tain a data percentage of 80-10-10%, respectively. The fea-

tures have been scaled, given the data points in the train and

the validation sets.

1 https://github.com/bytedance/midi_melody_

extraction

3.3 Metrics

The metrics that we have computed for this task are the

following: accuracy indicating the overall accuracy of

the predicted notes in percentage, as well as the mel_P,

mel_R and mel_F for melody notes precision, recall and

F measure values, respectively:

mel_P =
|Correctly predicted melody notes|

|Notes predicted as melody|
(2)

mel_R =
|Correctly predicted melody notes|

|Melody notes|
(3)

mel_F = 2 ∗ (
mel_P ∗ mel_R

mel_P+ mel_R
) (4)

Also, we include the metric Voice False Alarm

(VFA) from mir_eval [19], which is defined as the number

of notes predicted as melody notes, although they are not,

divided by the number of non-melody notes.

4. EXPERIMENTS

To evaluate the performance of our system, we have pre-

pared a list of separate model setups, given the same

train, validation and test sets. Also, we were interested in

whether two types of data augmentation techniques would

improve the accuracy of LStoM when applied in isolation

as well as together. The first type is to shift the score key

by altering the note pitches, where each piece has been

transposed by n semitones, for n in {−6,−5, ..., 4, 5} (the

model is tagged as ªLStoM PSaugm" standing for pitch

shifting augmentation). The second type is to shift the

melody notes one octave lower than the original one (the

model is tagged as ªLStoM MOaugm" standing for melody

octave augmentation). Both techniques are common in the

literature for the task of symbolic melody extraction [10].

4.1 Comparison with the state of the art

We investigate how other models that report state of the art

results in various datasets perform in the case of the spe-

cific train, validation and test sets. To this end, we were

able to train two models. One is following the default set-

tings of [11] tailored to the task of the melody identifica-

tion, using the augmentation techniques that are provided

from this work and the pitch proximity method as a seg-

ment merging mode among the created note clusters (the

model is tagged as ªHsiao-Su"). The other is following

the default settings of [10], again using the augmentation

techniques that are provided from this work (the model is

tagged as ªLu-Su").

The skyline algorithm [8], which is essentially picking

the highest pitch at a given onset time, has been consid-

ered as our baseline. Also, we consider a skyline variation

where we keep the duration of the note with the highest

pitch, ignoring the lower-pitch notes that start after its on-

set and before its offset. Both original and variation skyline

output are illustrated in Figure 1, using the input example

as reported in [8].
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Figure 1. Illustration of our baselines. a) Input example, b)

Output of skyline algorithm, c) Output of skyline variation

algorithm.

Model acc
(%)

mel_F mel_P mel_R VFA

LStoM* 92.3 0.816 0.778 0.872 0.065
LStoM* PSaugm 91.6 0.788 0.791 0.799 0.054
LStoM* MOaugm 92.3 0.800 0.815 0.811 0.066
LStoM* MO+PSaugm 91.9 0.798 0.797 0.811 0.054
MIDIBERT* [13] 97.1 0.930 0.912 0.952 0.024

LStoM 90.7 0.774 0.751 0.814 0.070
MIDIBERT [13] 91.9 0.772 0.841 0.727 0.035
skyline 63.1 0.499 0.353 0.881 0.435
skyline-variation 78.7 0.569 0.485 0.697 0.192
Lu-Su [10] 66.6 0.614 0.600 0.638 0.299
Hsiao-Su [11] 82.5 0.650 0.544 0.821 0.176

Table 2. Basic comparison results among testing models.

An ‘*’ is added to indicate that the MIDI files in the test

set have been pre-processed.

Both LStoM and MIDIBERT 2 include pre-processing

steps for note quantisation and alignment in downbeat level

when preparing the MIDI files for training. At the testing

stage, we considered as a fair comparison to first repli-

cate the results of [13] where the MIDI files of the test

set have been pre-processed, therefore our pre-processing

steps were applied to the test set as well for LStoM and its

augmentations (metrics reported at the top part of Table 2).

The augmentations do not appear to improve the overall

performance of LStoM. In the bottom part of Table 2, we

report the metrics of the remaining comparison, where the

notes of the test set have not been quantised nor aligned

to the downbeat. Interestingly, MIDIBERT outperforms in

the first scenario, while the results are mixed in the second

one.

Lastly, LStoM is significantly lighter than MIDIB-

ERT; the number of parameters are 875,462 compared to

111,298,052, respectively.

In the next two subsections, we are exploring LStoM in

terms of how important the selected features for the train-

ing process are (Section 4.2) and we are discussing some

observations from the models’ outcome, respectively (Sec-

tion 4.3).

2 Function align_midi_beats in https://github.

com/wazenmai/MIDI-BERT/blob/CP/data_creation/

preprocess_pop909/preprocess.py, accessed 31 August 2022

4.2 Importance of features

We were interested to know how relevant the selected fea-

tures are for our task and whether any of them are more

important in a sense that they contain an amount of infor-

mation that is crucial for such systems. Algorithmically it

is feasible to examine and improve the interpretability of a

predictive model to a degree, and to identify a type of rank-

ing of importance for the input features. However, most

recent feature ranking algorithms assume feature indepen-

dence (for more examples and details we refer to [20]), an

assumption which is not safe in our case.

Ranking Feature Ranking Feature

1 pitch 4 dur

2 pitch_distance_above 5 pos_in_bar

3 pitch_distance_below 6 pitch_in_scale

Table 3. The ranking of feature importance obtained by

RELIEF algorithm.

One algorithm that is not based on this assumption is

RELIEF [21] which elaborates on a simple comparison

idea whereby feature value differences between nearest

neighbour instance pairs are identified. If a feature value

difference is observed in a neighbouring instance pair with

the same class, the feature ranking score decreases. How-

ever, the score increases when a feature value difference

is observed in a neighbouring instance pair with different

class values. We applied RELIEF to our dataset and the

resulting feature ranking is reported in Table 3.

Not by surprise, the pitch has been ranked as the most

important feature, followed by the one that computes how

much is the distance from the pitch above. The third fea-

ture in the ranking list is the similar one, computing the

pitch distance from the pitch below. The note duration

comes to the fourth place, followed by the metrical-related

feature of computing the position of the note within the

score bar, and finally whether the note pitch is in scale.

In order to evaluate the incremental contribution of each

of the features studied, we have considered feature subsets

by incrementally adding features to the training set one at

a time, starting with the most important one, i.e. the note

pitch, and continuing to add features according to their

rank order. The results obtained are reported in Table 4.

Model acc mel_F mel_P mel_R VFA

LStoM1 86.5% 0.672 0.652 0.708 0.094
LStoM1-2 88.4% 0.718 0.697 0.752 0.082
LStoM1-3 89.4% 0.738 0.723 0.768 0.073
LStoM1-4 90.3% 0.742 0.780 0.724 0.052
LStoM1-5 92.0% 0.797 0.803 0.806 0.051
LStoM1-6 92.3% 0.816 0.778 0.872 0.065

Table 4. Basic comparison results among the variations

of LStoM model, where LStoMx-x indicates the range of

ranked features used at the training process.

It is worth noticing that the highest ranked feature con-

tains on its own substantial predictive power: the melody

F-measure score for the model induced with only pitch in-

formation alone is 0.672, which is slighter higher than the
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Figure 2. Pitch interval distribution among melodies predicted by LStoM, MIDIBERT, ªHsiao-Su", ªLu-Su", skyline and

skyline-variation compared to the melodies from the test set.

Figure 3a. Sparsity ratio among melodies predicted by LStoM, MIDIBERT, ªHsiao-Su", ªLu-Su", skyline and skyline-

variation.

one obtained by our trainings on ªHsiao-Su" and ªLu-Su"

systems. Interestingly, the precision is reduced by a very

small margin and the voice alarm error value is slightly

increased, when adding the feature pitch_in_scale,

however the accuracy is increased at the same time.

4.3 Observations

Having a closer look to the predicted melodies by LStoM,

MIDIBERT, ªHsiao-Su", ªLu-Su" and the baselines, we

can highlight two separate statistics. One is the distribu-

tion of the note intervals among the consecutive melody

note pairs (Figure 2 ± the x axis has been limited to the

range of around two and a half octaves for paper fitting pur-

poses), where overall the melodies predicted by the models

tended to reflect characteristics from the original melody

contour. Another statistic is the percentage of predicted

melodies with various degrees of sparsity in them. By spar-

Figure 3b. Sparsity ratio among melodies in the test set.

sity, we mean the ratio of the total duration of the silent

parts over the total duration of the notes in a score. Fig-
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ure 3a shows the sparsity distribution among the predicted

melodies, while Figure 3b highlights the ground truth from

the test set. A small amount of melodies from MIDIBERT

tends to be more sparse than the scores from the test set.

The most challenging melody notes to classify are those

that are not the highest note; i.e., those that the skyline

method would certainly miss. We have used the same test

set where around 28% of the melody notes are such chal-

lenging cases; of these, the LStoM system classifies cor-

rectly around 82%. What pattern in the feature data did the

model use to achieve this high performance?

Figure 4. Scaled representation for the pitch-duration fea-

ture pair, for the melody notes that are not the highest

note and have been either predicted correctly±top± or not

(missed)±bottom.

It is not easy to examine the reason why sometimes such

notes are not predicted as melody notes, but to investigate,

we scaled the feature values of these true melody notes,

and compared distributions of features between the cor-

rectly labelled (i.e., retrieved) and incorrectly labelled (i.e.,

missed) notes. One distribution that stood out is shown

in Figure 4, a scatter plot of the pitch and duration of the

melody notes. One may observe that although the distri-

butions are similar, there are many more correctly labelled

notes with high pitch and long duration. Such findings in-

dicate that disentangling such points is not trivial, if at all

feasible with our current feature set alone.

5. CONCLUSIONS AND PERSPECTIVES

In this paper we have presented a novel deep learning

model of identifying the melody line from a polyphonic

symbolic music. The key characteristics of the model is

the input data representation as a set of features from the

relevant task of multiple voice separation as well as the

bidirectional nature of the architecture which provides in-

formation of future observations during the prediction pro-

cess. The features have been examined regarding their

ability to contain the information that the model needs to

more accurately predict a melody note. Also, two data aug-

mentation techniques are examined in isolation.

Results indicate that the proposed lightweight model

which is trained and tested on a set of pop songs is capable

of performing at the standard of existing benchmarks. Ob-

servations on the results reveal the ability of the model to

reflect the concepts of score sparsity or the melodic pitch

intervals from the test set. LStoM also performs well in

situations where the melody note to be identified is not

in the highest pitch of the score. One direction to ex-

plore is expanding the set of input features. Note veloc-

ity information or metrical representation extracted from

the dataset could accommodate additional features for our

model. Post-processing techniques have not been explored

thoroughly, however they could help improving the results.

Setting research experiments for the task of melody ex-

traction in the symbolic domain is challenging, in terms

of data gathering and manipulating separate model archi-

tectures to fit the needs of a comparison task. Accumu-

lating the available datasets and the existing systems to a

common space for easy approach, such as in a dedicated

MIREX page is a promising step forwards. To this end, ex-

amining how our model performs using different datasets

in the training or inference process, is a step towards a

more comprehensive review.

A direction that has been little explored is combining

information from the symbolic domain to the prediction of

melodies in the audio domain. Most of the existing litera-

ture for audio melody transcription relies only on informa-

tion from the audio signal in isolation from other musical

context explicitly. However, in [22], given a polyphonic

music audio signal, the model is able to convert it to a pi-

ano arrangement; as part of this style transferring process,

MIDI scores have been used as ground truth. Also, in [23],

symbolic data representation has been used to pre-train a

model which then operates to the audio domain. Tasks

such as de-noising could be revisited following this per-

spective.
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