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ABSTRACT

Modern digital music production typically involves com-

bining numerous acoustic elements to compile a piece of

music. Important types of such elements are drum sam-

ples, which determine the characteristics of the percussive

components of the piece. Artists must use their aesthetic

judgement to assess whether a given drum sample fits the

current musical context. However, selecting drum samples

from a potentially large library is tedious and may inter-

rupt the creative flow. In this work, we explore the auto-

matic drum sample retrieval based on aesthetic principles

learned from data. As a result, artists can rank the samples

in their library by fit to some musical context at different

stages of the production process (i.e., by fit to incomplete

song mixtures). To this end, we use contrastive learning to

maximize the score of drum samples originating from the

same song as the mixture. We conduct a listening test to

determine whether the human ratings match the automatic

scoring function. We also perform objective quantitative

analyses to evaluate the efficacy of our approach.

1. INTRODUCTION

Machine-learning (ML) powered tools are increasingly find-

ing their way into modern music production [1]. Commer-

cial tools already use machine learning for different appli-

cations, like mixing/mastering 1 or data visualization. 2 In

public perception, ML and artificial intelligence (AI) is of-

ten associated with content generation. Indeed, also in mu-

sic production, generative AI models are about to transition

from research labs to the studio, in the form of tools that in-

tegrate seamlessly into the artist’s workflow, like Magenta

Studio 3 and others [2–6].

Besides content generation, another frequent task in mod-

ern music production is content retrieval, where commer-

cial solutions (based on expert systems) also already ex-

ist. 4 In manual content retrieval (i.e., content selection),

artists select “loops” (short, typically bar-aligned audio files

1 https://www.izotope.com/
2 https://algonaut.audio/
3 https://magenta.tensorflow.org/studio/
4 https://jamahook.com/
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of any content) or “samples” (usually shorter, single notes

or drum hits) that fit the current musical context. Content

selection is a creative act in its own right, but it is chal-

lenging to browse through potentially large loop or sample

libraries while – crucially – keeping the current context in

mind.

To support the selection process, we envision a retrieval

system that learns aesthetic principles of matching drum

samples to musical context from data. As a result, it is

able to sort a drum sample library according to a score it

assigns to each sample. This lets users start their search

with the most promising options first and may help turn a

cumbersome curation process into a more artistic activity.

We use the cosine similarity in a learned latent space as

a scoring function. Two encoders are trained with a con-

trastive loss to maximize the score between mixtures and

drum samples originating from the same song. The en-

coders are trained with an electronic and acoustic data set

of songs whose tracks are available separately. We per-

form a user study to evaluate if human listeners agree with

our proposed scoring function. To that end, we test if par-

ticipants prefer samples that obtain a high rating by the

scoring function over randomly selected samples. Further-

more, we perform an ablation study to evaluate the differ-

ent components of our method. In addition, we want to

understand better how the learned space is organized. In

particular, we want to gain some insights into the relation-

ship of drum samples that fit well in the same context. For

that, we perform a correlation analysis between audio fea-

tures of samples that are close in the learned latent space.

The paper is organized as follows. Related works are

discussed in Section 2, and Section 3 describes the used

method. The used data and data preprocessing are de-

scribed in Section 4. Section 5 explaines how the model

training is performed. In Section 6, we introduce the per-

formed experiments, including the objective evaluation, a

user study and correlation analysis. We present and discuss

the results in Section 7 and conclude in Section 8.

2. RELATED WORK

Self-supervised learning has been a hot topic in recent years,

with well-known works in the visual domain, like MoCo

[7] and SimCLR [8] that adopt contrastive learning ap-

proaches, and BYOL [9], or VICReg [10] that aim to elimi-

nate negative samples. Examples for contrastive approaches

in the speech domain are Wav2Vec [11], Wav2Vec 2.0 [12],

as well as SpeechSimCLR [13]. Inspired by these works,

self-supervised learning in non-speech (i.e., musical and
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environmental) audio was also introduced with contrastive

approaches [14,15], Audio2Vec [16] and Wav2Vec for non-

speech audio using a conformer architecture [17]. An ex-

ample for self-supervised learning for audio based on the

BYOL method is [18]. Other audio-related contributions

based on contrastive learning are multimodal contrastive

learning (for audio and video) [19], as well as multi-format

contrastive learning (between raw audio and spectrogram

representations) [20]. We adopt ideas from self-supervised

learning methods mentioned above, using a dictionary look-

up approach like in MoCo [7], we adopt the variance- and

co-variance regularization of VICReg [10], and we use de-

coupled contrastive learning, as proposed in [21].

Other works on drum sample retrieval involve the con-

trastive learning-based retrieval of single drum samples by

their mixed versions [22] and retrieval by vocalization [23,

24]. Other academic works that tackle the task of match-

ing artistic content based on aesthetic principles are the

Neural Loop Combiner [25], and a stem mashup creation

approach [26] (both based on contrastive learning). Other

methods for computational mashup creation are based on

optimization [27] or expert systems [28].

3. METHOD

3.1 Scoring Function

The goal of our proposed method is to estimate how well

a given drum sample fits a specific musical context. This

task can be modeled by contrastive learning as a dictio-

nary look-up task, as described in [7]. A musical context

qi ∈ R
m acts as a query, and drum samples kj ∈ R

m

as keys. We define a scoring function s(qi,kj) that out-

puts a high score if the sample fits the query. To that

end, we use two encoders gq and gk to produce a query

encoding ui = gq(qi),ui ∈ R
d and a sample encoding

vj = gk(kj),vj ∈ R
d. Finally, we define the scoring

function as the cosine similarity sim(·, ·) between the re-

sulting encodings s(qi,kj) = sim(ui,vj). We train the

encoders using a contrastive loss called NT-Xent in [8]:

X (Z) = − log
exp (sim(ui,vj)/τ)

∑

l 6=j exp (sim(ui,vl)/τ)
, (1)

where {ui,vj} is a positive pair, Z ∈ R
n×d are all rep-

resentations of a training batch, τ is the temperature pa-

rameter, and we adopt the decoupled contrastive learning

variant, that has shown to work better for smaller batch

sizes, by removing the positive pair from the denominator

(i.e., l 6= j) [21].

3.2 Regularizations

Furthermore, we combine the contrastive loss with the vari-

ance and covariance regularization used in VICReg [10].

The variance regularization term is defined as a hinge func-

tion that penalizes variances of latent features along the

batch dimension that are smaller than 1 as

V(Z) =
1

d

d
∑

j=1

max (0, 1− S(z:,j , ǫ)), (2)

where Python slicing notation is used, and S is the regular-

ized standard deviation

S(x, ǫ) =
√

Var(x) + ǫ. (3)

The covariance regularization penalizes non-zero off-

diagonal entries in the covariance matrix of each batch,

leading to a decorrelation of the latent dimensions:

C(Z) =
1

d

∑

i 6=j

[C(Z)]2i,j , (4)

where C is the covariance matrix

C(Z) =
1

d−1

d
∑

i=1

(z:,i − z̄i)(z:,i − z̄i)
T , z̄i =

1

n

n
∑

j=1

zj,i.

(5)

Even though the cosine distance renders the norms of

the network outputs irrelevant, they can still grow due to

optimization dynamics. To keep the norms in a moderate

range, we also add a norm regularization in form of a hinge

function as

N (Z) = −
1

n

n
∑

i=1

min (0, c− ||zi||), (6)

where we fix c = 4 in our experiments (because most

norms are smaller than 4 at initialization). Putting all the

above terms together (and weighting the regularization terms

with factors γ, δ and η), yields the final loss

L(Z) = X (Z) + γV(Z) + δC(Z) + ηN (Z). (7)

4. DATA

We used a dataset of electronic music and pop/rock songs

of 44.1 kHz sample rate for training and evaluation. The

electronic music portion consists of 4830 so-called “remix

packs”, with durations ranging from several seconds to sev-

eral minutes. Each remix pack consists of multiple audio

tracks that contain the individual (mutually aligned) instru-

ments (such as synth, bass, guitar, pad, strings, choir, brass,

keyboard, vocals, and different percussion instruments).

The Pop/Rock dataset is a proprietary dataset of 885
well-known rock/pop songs of the past decades, including

artists such as Lady Gaga, Coldplay, Stevie Wonder, Lenny

Kravitz, Metallica, AC/DC, and Red Hot Chili Peppers.

The stems (guitar, vocals, bass guitar, keyboard, misc, and

different percussion instruments) are available as individ-

ual audio tracks for each song.

From every percussion track in the dataset, we extract

so-called “one-shots”, single hits with the respective per-

cussion instrument. To that end, we picked those sam-

ples where the subsequent onset is of maximal distance

(to retain most of the percussion’s potential reverb). From

the pop/rock songs, we extract 5 one-shots per percussion

track, while from the electronic songs, we extract 1 one-

shot per percussion track (as most of the time they are all

identical). Altogether, this results in 63042 one-shot drum

samples.
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We categorize the extracted drum samples into 6 cate-

gories which are {kick, snare, hi-hat, ride, crash, toms}.

The assignment is based on the filenames of the stems the

samples originate from, using keyword dictionaries of typ-

ical drum-type expressions (like “hat” for hi-hat or “BD”

for kick drum). We split the dataset in train / eval / test set

with proportions 0.85/0.05/0.1 (on a track level, meaning

that samples of one track do not spread over different sets).

All reported results are computed on the test set.

5. TRAINING

As an encoder, we use the EfficientNet-B4 [29], where we

start training from weights that have been pre-trained on

the ImageNet dataset. Even though ImageNet is far from

the audio spectrum domain, it turned out that using Ima-

geNet weights is crucial in our experiments (see Section

7.1, and it has also been shown in a previous study that

cross-domain pre-training can be beneficial [30]).

The 1000 output units are reduced to 256 with a single

linear layer. The EfficientNet expects a 2D input, which

we provide by converting the audio signals into mel-scaled

spectrograms with an STFT window length of 2048, a hop

length of 512, and 128 resulting mel bins, considering the

whole frequency range (fmax = 22050). Also, we log-

scale the values of the resulting mel spectrograms. We in-

put the resulting spectrograms in each of the three RGB

input channels of the EfficientNet (after normalization to

the ImageNet color statistics).

A positive pair consists of an audio query and a cor-

responding drum sample. Given a drum sample, we se-

lect the stems of the corresponding song and remove the

stem from which the drum sample was extracted. Then,

we randomly choose at least 2, at most all of the remaining

stems (the number of stems is uniformly sampled) and mix

them on the fly during training (note that the mel spectro-

gram transformation is part of the model architecture us-

ing the nnAudio library). 5 All audio inputs are of length

4 seconds. If a drum sample is shorter than that, it is zero-

padded. To obtain a query, we are cutting a 4-second-long

snippet from a random position of the mixture.

The encoders are trained by the ADAM optimizer, with

a batch size of 190, a learning rate of 3e-4, and a weight

decay factor of 3e-5. The temperature parameter τ of the

NT-Xent loss is set to 0.2. The factors for the variance and

covariance regularization terms γ and δ are set to 1, and

the norm regularization factor η is set to 10.

We use some data augmentation on both the queries and

the drum samples. First, Gaussian noise is added (up to

−12 dB). Furthermore, we perform time-stretch with a ra-

tio between 0.9 and 1.15 of the original tempo. Another

augmentation is reducing the gain down to a minimum at-

tenuation of −6 dB, and we perform a time shift of up to

800ms to the right and 200ms to the left (to make the mod-

els invariant to the exact onset position of one-shot audios).

All these augmentations occur with a probability of 50%
for each instance.

5 https://github.com/KinWaiCheuk/nnAudio

6. EXPERIMENTS

In this section, we introduce the conducted experiments

to validate our method including objective metrics (Sec-

tion 6.1), the user study (Section 6.2), and we describe the

method of the correlation analysis (Section 6.3).

6.1 Objective Evaluation

As the actual goal of the study is to sort the candidate sam-

ples given an audio query qi, the primary evaluation metric

is the ranki of the ground-truth samples for a given query

(i.e., the samples that originate from the same song as the

query). For that, we sort all drum samples in descending

order according to the cosine similarity to a given encoded

query and determine how early in the list a ground-truth

sample is located. We also divide the ranki by N list en-

tries to obtain normalized ranks ∈ (0, 1]. As we can extract

several queries (4-second-long random excerpts) for each

song in the test set, and as there are several drum samples

assigned to each song, we perform this test for every song

in the test set 50 times (resulting in |Q| = 27k evaluations)

and average the resulting ranks. The explanation above re-

sults in the Mean Normalized Rank summarized as

Rmn =
1

|Q|

|Q|
∑

i=1

ranki

N
. (8)

In addition, we also report the Median Normalized Rank

Rmd, as this is an indicator of how well the model performs

most of the time, ignoring possible outliers.

Besides also reporting the contrastive loss X (see Equa-

tion 1), we also evaluate how well the model has learned to

cluster electronic and acoustic queries (i.e., mixtures) and

keys (i.e., drum samples). To that end, we perform a binary

(acoustic/electronic) k-nn classification (with k = 50) on

the encodings separately for both the queries and the keys.

From this classification task, we report the likelihood (Lq

and Lk, respectively) of the data under the predictions.

In order to better understand the influence of different

design choices, we perform ablation studies and report the

metrics for each model and training variants. The different

ablation scenarios are described in the following.

• 2Enc denotes our proposed setup with 2 separate

encoders instead of a shared encoder for both, queries

and samples.

• PTrain denotes a variant that starts training from

an EfficientNet that was pre-trained on ImageNet,

instead of from randomly initialized weights.

• In Aug, data augmentation is used.

• VCReg, is using the variance and co-variance regu-

larization terms (see Equations 2 and 4).

• In SMix, we randomly mix different numbers n of

random stems to form a query (where n > 1). If

SMix is not used, we always mix all stems of a song.
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• For QSInv, in addition to sampling positive pairs

from queries and corresponding samples, we also in-

clude as positive pairs two queries and two samples

originating from the same song.

6.2 User Study

To evaluate the quality of the scoring function, we per-

form a user study in which we ask 10 experts (with mu-

sical education or concerned with music production) to

rate the quality of selected drum samples given a musical

context. More precisely, we test their preference between

drum samples that scored well according to our system and

samples that are randomly picked from the dataset. The

possible choices are to select one of the two proposed mix-

tures, or “equal” (if there is no preference for one of the

choices), or “skip” (if the samples to be rated are not of the

expected class or any other problem occurred). Every par-

ticipant obtains 12 single comparisons (presenting each of

the 6 percussion types twice) and provides 12 ratings ac-

cordingly. After that, they can decide if they want to enter a

further session (to provide 12 further ratings). Participants

are asked not to perform more than 4 sessions to obtain a

balanced result.

The procedure to obtain one comparison presented to a

participant for rating is as follows. We pick a percussion

type (e.g., snare) and a song from the test set that contains

such a type as a single stem. We remove the stem con-

taining that type, mix the remaining stems and pick ten

4-second-long excerpts from randomly sampled positions

of the resulting mixture. All these excerpts are then fed

through the query encoder, and the mean is taken from the

resulting encodings. The resulting mean vector acts as the

query encoding for the current song. Using this query, the

cosine similarities to the latent representations of all 63k

drum samples in the data set (obtained as described in Sec-

tion 6) are computed, and the ten samples with the highest

similarities are selected. Furthermore, ten drum samples

of the corresponding percussion type are randomly picked

from the data set. The thereby obtained samples are used

to generate 20 new versions of the current song (a version

for each sample).

To create a new version of a song, we perform an onset

detection on the previously removed stem (containing the

percussion type in question), position the selected samples

in the estimated positions, and mix the resulting stem with

the remaining stems (omitting the original stem of the per-

cussion type in question). That way, we replace the origi-

nal drum track with a track containing the drum sample to

be evaluated. For a single user rating, we then contrast the

mixtures of a randomly picked and a highly rated percus-

sion sample and have participants indicate their preference

between the two.

6.3 Correlation Analysis

In order to gain some insights into the latent space learned

by the encoders, we perform a correlation analysis between

audio features of neighboring data points. For that, dif-

ferent perceptual and spectral features are computed for

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

electronic acoustic

Figure 1: Principal Component Analysis (PCA) of drum

sample encodings. Red dots indicate samples originating

from electronic music and blue dots indicate samples orig-

inating from acoustic music.

the drum samples in the data set using the Audio Com-

mons timbre models 6 for perceptual features (e.g., boomi-

ness, brightness, depth, hardness, roughness, warmth) and

librosa 7 for spectral features (e.g., spectral centroid or

spectral contrast). We also add an indicator if the respec-

tive drum sample originates from an electronic or acoustic

song. In the former case, the “electronic” feature value is

set to 1, in the latter case to 0.

The drum samples are mapped into the sample encoder’s

latent space, and k-means clustering is performed using

k = 24. In each cluster, the mean of each audio feature

is used as a specific observation of that audio feature vari-

able. Then, the Pearson correlation coefficient is computed

between all such variables (separately for every percussion

type). As a result, we can derive statements like “whenever

the loudness of a kick drum is high, the boominess of the

snare tends to be low”. Note that for computing the audio

features, we normalize every sample to 0.5 seconds (i.e.,

cut or pad) so that the audio feature computation is not in-

fluenced by the length of the audio file (as some features

are computed by averaging several spectrogram frames).

To obtain the latent encodings used to compute the clus-

ters, we use the regular 4-second-long samples.

7. RESULTS AND DISCUSSION

7.1 Objective Evaluation

In Table 1, we report the contrastive loss, the Mean and

Median Normalized Rank, and the query and sample elec-

tronic/acoustic classification likelihood for different archi-

6 https://github.com/AudioCommons/

ac-audio-extractor
7 https://librosa.org/
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Queries: full mixtures Queries: sparse mixtures

Variant X Rmn Rmd Lq Lk X Rmn Rmd Lq Lk

2Enc+PTrain+Aug+VCReg+SMix 3.614 0.105 0.032 0.9940 0.9767 3.761 0.124 0.043 0.9905 0.9763
2Enc+PTrain+Aug+VCReg+SMix+QSInv 3.718 0.120 0.037 0.9900 0.9782 3.818 0.136 0.047 0.9862 0.9768
2Enc+PTrain+Aug+VCReg 4.001 0.124 0.061 0.9825 0.9732 4.389 0.183 0.100 0.9635 0.9724
2Enc+PTrain+VCReg+SMix 3.742 0.128 0.037 0.9945 0.9895 3.780 0.137 0.042 0.9901 0.9898

2Enc+PTrain+Aug+SMix 3.575 0.116 0.032 0.9946 0.9774 3.812 0.135 0.043 0.9893 0.9790
2Enc+Aug+VCReg+SMix 5.235 0.458 0.432 0.7268 0.7629 5.237 0.470 0.451 0.7188 0.7480
2Enc+Aug+VCReg+SMix+QSInv 4.174 0.164 0.079 0.9826 0.9566 4.387 0.181 0.091 0.9768 0.9585
PTrain+Aug+VCReg+SMix 3.853 0.121 0.047 0.9812 0.9809 4.000 0.137 0.058 0.9768 0.9819
2Enc+PTrain 3.883 0.140 0.053 0.9925 0.9795 4.399 0.205 0.089 0.9821 0.9803

Table 1: Ablation study for different architectures and training scenarios tested on queries from full mixtures and queries

from sparse mixtures (a sparse mixture is based on a random number n of stems, where n > 1). X denotes the contrastive

loss and Rmn and Rmd is the mean and median normalized rank, respectively, of ground truth samples. Lq is the likelihood

of the binary k-nn (electronic/acoustic) classification task for query, and Lk for key encodings in the latent space.

tectures and training scenarios (as described in Section 6.1).

For each run, we train for 600 epochs and pick the saved

checkpoint of the epoch with the best performance (regard-

ing the Mean Normalized Rank Rmn) on the evaluation set

for evaluating the test set. We report the results when eval-

uating the models with queries that are drawn from mix-

tures where all stems of a song are used (denoted as “full

mixtures”) and mixtures with a random number n of stems

(denoted as “sparse mixtures”, where n > 1). The latter

scenario is crucial in music production, where sample se-

lection may occur at an intermediate state of the project,

when several instruments are still missing.

The results show that our proposed architecture and train-

ing procedure (first row in Table 1) performs best in the

mean and median rank metrics (Rmn and Rmn) for both

query scenarios (note that the random guessing baseline

is 0.5). It is somewhat surprising to us that QSInv (i.e.,

imposing additional invariance for queries/samples origi-

nating from the same song) does not improve but rather

worsens the result (cf. row 2 of the table). Apparently, the

relaxation of the space caused by not using this regulariza-

tion helps to perform the main objective.

We can see for SMix that it is vital to mix different

(numbers of) stems on the fly during training (cf. third row

in Table 1 where this has not been done). SMix does not

only help for the “sparse mixtures” scenario at test time

(right part of the table) but also in the “full mixtures” sce-

nario (left part of the table).

Using a pre-trained EfficientNet (PTrain) makes a con-

siderable difference in the overall performance and training

dynamics. In fact, when not using pre-trained weights, it

is necessary to add QSInv in our experiments. Otherwise,

the encoders do not learn at all (see row 6 in Table 1).

The last row of Table 1 presents the results of a sce-

nario where all training optimizations (augmentation, vari-

ance, co-variance regularization, and sparse mixing) are

turned off. It can be seen that the performance deteriorates

substantially, particularly in the “sparse mixtures” test sce-

nario.

Finally, the results of the classification likelihood (mostly

around 99%) show that the models have implicitly learned

to separate electronic and acoustic content (cf. Figure 1,

showing a PCA of the drum sample encodings). Interest-

best random equal
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pe
rc
en
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type
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Crash
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Figure 2: Preference ratings of participants in the user

study, separated by percussion type (the blue bar “Mean”

shows the mean of all ratings). “best” are mixtures with

samples that scored highest by our method, and “random”

denotes mixtures with random samples from the data set.

An “equal” rating means no particular preference.

ingly, this separation works consistently better if no data

augmentation is used (see row 4 in Table 1). Electronic

samples are generally “cleaner” than those extracted from

acoustic music. Augmentation (e.g., adding noise) may

remove some of these characteristics, making it harder to

discriminate between the two classes.

7.2 User Study

Figure 2 shows the results of the listening test (based on

300 ratings in total, omitting skipped ratings). On aver-

age (“Mean”), the samples that are ranked “best” by our

method were preferred approximately twice as often as

random samples (61.57% to 32.64%). It is also interesting

that for most percussion types, the human preference for

“best” is similar to or better than average (with Snare and

Ride being the most salient), while human ratings disagree

with our system’s choices, particularly often for HiHat and

Toms. A hypothesis why HiHats perform worse is that we

merged both open and closed hi-hat in one group. When

replacing the original hi-hats with the selected ones, there

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

785



bo
om

ine
ss

bri
gh

tne
ss
de

pth

ha
rdn

ess

lou
dn

ess

rou
gh

ne
ss

sha
rpn

ess

warm
th

log
_at

tac
k_t

im
e

spe
ctr

al_
cen

tro
id

spe
ctr

al_
ba

nd
widt

h

spe
ctr

al_
con

tra
st

spe
ctr

al_
fla

tne
ss

spe
ctr

al_
rol

lof
f

ele
ctr

on
ic

Crash

boominess
brightness

depth
hardness
loudness

roughness
sharpness

warmth
log_attack_time

spectral_centroid
spectral_bandwidth

spectral_contrast
spectral_flatness

spectral_rolloff
electronic

Sn
ar

e

0.6 -0.60.7-0.4-0.1-0.6-0.60.3 0.3-0.7-0.6-0.20.5-0.7-0.6
-0.50.6-0.60.7-0.10.5 0.7-0.4-0.50.6 0.5 0.1-0.30.6 0.6
0.6-0.60.7-0.5-0.1-0.6-0.70.4 0.4-0.7-0.6-0.20.5-0.7-0.7
-0.40.5-0.50.6-0.10.4 0.5-0.4-0.40.6 0.5 0.1-0.20.6 0.4
-0.40.4-0.40.2 0.4 0.5 0.5-0.10.1 0.6 0.5 0.2-0.50.6 0.6
-0.40.4-0.30.6 0.1 0.4 0.4-0.3-0.10.4 0.4 0.0-0.10.4 0.3
-0.50.6-0.50.7-0.10.5 0.6-0.4-0.40.6 0.5 0.0-0.20.5 0.5
0.6-0.60.7-0.60.0-0.6-0.70.4 0.4-0.7-0.6-0.20.4-0.7-0.7
-0.30.3-0.20.2 0.5 0.4 0.3-0.00.4 0.2 0.2-0.1-0.20.2 0.3
0.5-0.50.6-0.2-0.2-0.5-0.50.2 0.3-0.6-0.5-0.20.6-0.6-0.6
0.6-0.60.6-0.3-0.1-0.5-0.60.3 0.4-0.7-0.6-0.10.5-0.6-0.7
0.5-0.60.5-0.60.1-0.5-0.60.4 0.4-0.6-0.50.1 0.3-0.6-0.7
-0.60.6-0.70.5-0.00.6 0.7-0.4-0.50.7 0.6 0.1-0.50.7 0.7
0.5-0.50.6-0.2-0.1-0.5-0.60.3 0.3-0.6-0.5-0.20.6-0.6-0.7
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Snare vs. Crash

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure 3: Correlations between perceptual and spectral

features (and electronic / acoustic indicator) of Snare and

Crash drum samples that are close in the latent space (i.e.,

scored to fit well in the same musical context).

is an equal chance that an open hi-hat is used for a rhythm

that is meant to be instantiated with a closed hi-hat and vice

versa. This is particularly problematic in electronic music,

where closed hi-hats are often used with minimal temporal

intervals. The reason why Toms do not work well is prob-

ably due to less available training data (many tracks do not

have tom stems). Examples of how the user study was pre-

sented can be found on the accompaniment website. 8

7.3 Correlation Analysis

Figure 3 shows the correlation coefficients between audio

features of snare and crash drum samples over clusters in

the latent space (as described in Section 6.3, note that the

entirety of the percussion-type combinations is shown on

the accompaniment website). 8

To our knowledge, there is no theory about the aesthetic

rules of drum sample selection. Therefore, this analysis is

particularly informative. It is interesting to see that strong

correlations exist at all between the audio features of snare

and crash found in the same clusters of the latent space (as

is true for most other percussion-type combinations). Con-

sequently, the characteristics that make drum samples fit in

the same musical contexts can (also) be explained by such

lower-level features. Using such correlation coefficients

makes it possible to understand how the learned space is

organized. More importantly, it is also possible to derive

rules and make the method explainable. For example, it is

possible to extract statements like “if the snare of a song

sounds warm, the crash should not sound bright” (because

“warmth” of the snare and “brightness” of the crash are

negatively correlated with a coefficient of −0.6).

When looking at the diagonal of the correlation matrix

in Figure 3, we see that the perceptual features tend to

be positively correlated (from “boominess” to “warmth”),

8 https://sites.google.com/view/samplematch

while the spectral features tend to be negatively correlated

(from “log attack time” to “spectral rolloff”). Possibly,

as snare and crash have similar perceptual characteristics,

they should not get into each other’s way regarding their

frequency ranges. Whenever the snare occupies the higher

frequencies, the crash occupies the lower frequencies and

vice versa (according to the “spectral centroid” entry of

−0.6 in the diagonal).

Finally, the correlations with the “electronic” indicator

are also informative. It shows that a snare (and partly a

crash) in electronic music tends to be more intense than in

acoustic music, with more brightness, loudness, and sharp-

ness. At the same time (looking at the spectral centroid), in

electronic music, a snare tends to occupy rather lower fre-

quencies than in acoustic music, while the opposite is true

for crash (where the spectral centroid is positively corre-

lated with electronic snares - having a correlation coeffi-

cient of 0.7). The high correlation of “electronic” (0.9) in

the diagonal shows that electronic snares and crashes tend

to be in the same clusters of the latent space.

8. CONCLUSION AND FUTURE WORK

We introduced a method that automatically scores the fit of

drum samples to a given musical context. As the method is

thought to be used in a music production context, the audio

queries used for training are based on “sparse mixtures”,

which allows scoring samples at different stages of the mu-

sic production process. Results show that this form of data

augmentation generally improves performance, also when

queries are computed from complete mixtures at test time.

Critically, the automatic system should agree with human

judgment. Therefore, we performed a user study that tests

this agreement. It could be shown that the drum samples

that are highly rated by our system are also preferred by

human experts approximately twice as often as randomly

selected samples.

As the architecture and training procedure combine dif-

ferent ideas, we performed an ablation study, where it be-

came clear that starting with a pre-trained model is crucial

for a good final performance and that additional choices

(like using variance and co-variance regularization, data

augmentation, and on-the-fly sparse mixing) improve the

results considerably. It was also shown that audio fea-

tures of drum samples whose encodings are close in the la-

tent space are highly correlated, and we demonstrated that

the observed correlations can also be interpreted to derive

rules.

Our proposed method is not limited to drum samples but

can potentially be used to retrieve different kinds of musi-

cal material based on learned aesthetic principles. Also, in

the future, we want to scale up the system by using bigger

data sets and a more generic pre-processing strategy. Cur-

rently, single drum samples are extracted before training to

obtain a controlled experiment setup and application sce-

nario. Developing a system that uses stems directly would

apply better to audio sources of any type and would there-

fore greatly increase the applicability of our method in mu-

sic production.
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