
A TRANSFORMER-BASED ªSPELLCHECKERº FOR DETECTING
ERRORS IN OMR OUTPUT

Timothy de Reuse Ichiro Fujinaga

Centre for Interdisciplinary Research in Music Media and Technology, McGill University

{timothy.dereuse, ichiro.fujinaga}@mcgill.ca

ABSTRACT

The outputs of Optical Music Recognition (OMR) sys-

tems require time-consuming human correction. Given

that most of the errors induced by OMR processes appear

"non-musical" to humans, we propose that the time to cor-

rect errors may be reduced by marking all symbols on a

score that are musically unlikely, allowing the human to fo-

cus their attention accordingly. Using a dataset of Roman-

tic string quartets, we train a variant of the Transformer

network architecture on the task of classifying each sym-

bol of an optically-recognized musical piece in symbolic

format as correct or erroneous, based on whether a manual

correction of the piece would require an insertion, deletion,

or replacement of a symbol at that location. Since we have

a limited amount of data with real OMR errors, we employ

extensive data augmentation to add errors into training data

in a way that mimics how OMR would modify the score.

Our best-performing models achieve 99% recall and 50%

precision on this error-detection task.

1. INTRODUCTION

An enormous amount of music scores exist only in the

form of digital images, where its musical content is not

machine-readable. Among the fields of research that that

assist with large-scale processing of musical documents

is Optical Music Recognition (OMR), which investigates

how to transform images of music scores into symbolic

music files (e.g., MusicXML files) that can be searched,

played back, and edited. OMR has the potential to be

a valuable tool for music archives and libraries, but it is

not yet reliable enough; all methods require a human cor-

rection step after the OMR process, as the raw outputs of

currently-available OMR algorithms contain too many er-

rors to be acceptable for musicians or music researchers.

This is an issue when using OMR on printed Western mu-

sic notation, and is worse for other types of music notation,

especially when training data is scarce. While custom in-

terfaces exist for the purpose of facilitating human correc-

tion, such as the correction interface of MuRET [1], this is

© Timothy de Reuse, Ichiro Fujinaga. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: Timothy de Reuse, Ichiro Fujinaga, ªA Transformer-Based

ªSpellcheckerº for Detecting Errors in OMR Outputº, in Proc. of the

23rd Int. Society for Music Information Retrieval Conf., Bengaluru, In-

dia, 2022.

still a time-consuming task even for experts. While OMR

speeds up symbolic encoding in many cases [2], the pro-

cess of scanning documents, performing OMR, and cor-

recting OMR is not always faster than that of transcribing

pieces from scratch on complex, polyphonic scores [3].

We observe that OMR systems tend to introduce musi-

cally unlikely phenomena into scores. A typical example

of the errors induced by the OMR process of PhotoScore 1

(a leading proprietary, commercial OMR software) is il-

lustrated in Figure 1. In the OMR’ed score, consider the

pattern of missing staccato articulations in measure 1, the

eighth note misidentified as a sixteenth note in measure 2,

the strangely placed grace note in measure 3, and the ac-

cidental misidentified as a grace note in measure 6. Also

note how the slurs in each instrument of the OMR’ed score

do not match up with each other, though the correct phras-

ing could probably be guessed from the melodic content

alone. While not all of these phenomena are necessarily

impossible in a string quartet, a human looking over the

score would notice their presence.

Given the musical ªincorrectnessº of many of the errors

introduced by OMR, we propose that a machine-learning

algorithm could flag most OMR errors automatically given

information on the conventions of the genre. This could

reduce the correction time of a score; instead of checking

every measure of OMR output against the corresponding

measure in the score image, the user would only have to

check those regions flagged by the algorithm as possibly

erroneous. Even if the algorithm flags some non-erroneous

regions of the score, it could potentially still exclude large

portions of it from needing human review.

The reader may question why we aim for detection

of errors as opposed to correction of errors outright; this

could further reduce the time to correct OMR output even

further, and there exists a large body of work on error cor-

rection for natural language that we could draw on. We

posit, however, that any amount of correction that is not

guaranteed to address nearly all errors in an OMR output

would not significantly save time on the part of the hu-

man corrector, as they would still be required to manually

review the result anyway. Current studies on correcting er-

rors in polyphonic music (discussed in Section 2) do not

attain high enough performance to meet this bar.

1 /www.neuratron.com/photoscore.htm

789

Figure 1: Two versions of Felix Mendelssohn’s Quartet No. 2 in A Major, Op. 13, mm. 4-9. The upper system is an

engraving of the correct score. The lower system is an output from PhotoScore’s OMR Process. Some prominent errors are

highlighted in red.

2. PREVIOUS WORK

There is little other research that seeks to detect or cor-

rect errors in symbolic music in the context of OMR. Most

studies that discuss errors made by OMR systems seek to

characterize them as a part of a method of evaluating their

performance [4, 5]. As part of an end-to-end OMR sys-

tem, Rossant and Blach [6] explicitly encode some musical

rules (such as ensuring the number of beats in a measure

matches the most recent time signature) that let them high-

light areas that are likely incorrect, and also use confidence

measures of detection steps from earlier in their OMR pro-

cess to highlight areas that may have been detected incor-

rectly. More research focuses on error correction in mu-

sic for other applications. McLeod et al. [7] focus on the

task of analyzing errors in the output of Automatic Mu-

sic Transcription (AMT) methods, introducing rule-based

and machine leaning-based models to solve error detec-

tion and correction tasks, though these are intended as

proof-of-concept baselines to define the tasks. Ycart et

al. [8] compare a number of machine-learning models on

the closely related task of Symbolic Music transduction,

which involves processing the raw per-note probabilities

output by an AMT model and producing a valid symbolic

music file as output. Sidorov et al. [9] analyse music us-

ing formal grammars, taking the assumption that ªcorrectº

music tends to be highly compressible, and so any note

whose presence alone significantly increases the amount

of information in a piece is likely to be an error.

Significantly more literature exists in the fields of

Grammar Error Detection (GED) and Grammar Error Cor-

rection (GEC) in natural language. The fields are far

too broad to cover here; we direct readers to reviews on

these subjects by Wang et al. [10], covering GEC, and

Madi and Al-Khalifa [11], covering GED. Early models in

both of these fields were rule-based, wherein every type

of error had to be manually codified [12]. The current

state of the art in these areas is in sequence-to-sequence

deep-learning models similar to those used for machine

translation, reaching human-level performance on com-

mon English-language GEC benchmarks [13]. To achieve

this level of performance, however, a large amount of train-

ing data is required; there is much less research on GEC

and GED in low-resource languages, the vast majority be-

ing on either English or Chinese [11]. Our task faces a

similar issue; there exists orders of magnitude fewer train-

ing data for any one genre of music than there exists for

the English language.

Data augmentation is commonly used in GEC and GED

where data availability is low. Errors are added to cor-

rect examples and the models are then directed to cor-

rect those errors; we refer to errors created in this way as

synthetic errors and errors created by the process of in-

terest (e.g. errors induced by an OMR process) as natu-

ral errors. Early work on this process used simple statis-

tics about distributions and types of errors to add errors

semi-randomly [14, 15]. Later work, inspired by back-

translation techniques from machine translation, trained

models that add synthetic errors simultaneously with ones

that remove them. Htut and Tetreault [16] evaluate a

number of these models, finding that they provide signif-

icant improvements to training on natural errors when the

dataset containing natural errors is small. Notably, they

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

790

find these gains in performance even when the synthetic er-

rors are qualitatively different than the natural errors; that

is, a GEC method can still perform well even when it is

trained on grammatical errors that a human would never

make. However, when a large dataset of natural errors is

available, the improvements obtained by augmenting with

synthetic errors are significantly diminished.

3. METHODOLOGY

In developing our method, we aim for it to have the follow-

ing qualities:

• High Recall Rate: Our detection method should ideally

make no false negatives; that is, whenever an error is

present in its input, it highlights it. It is acceptable for

the precision to be significantly lower than the recall as

long as the user is assured that no errors lie outside the

flagged regions.

• Localization of Errors: Within the constraint of having

a high recall rate, the method should try to be as specific

as possible when pointing out errors.

• Trainable on a Small Dataset: Many of the most com-

mon use-cases of OMR are on genres that do not have

high-quality, large, digitized datasets on which we could

train.

• Takes Long Inputs: Many errors introduced by OMR

are unlikely to be identifiable in isolation from a small

snippet of music, and may only be recognized on the

basis of comparison with the rest of the piece.

3.1 Data Representation

What is ªan errorº in a musical score? Rigorously defin-

ing this notion requires some procedure to take the ªdiffer-

enceº between two scores (in our case, an OMR output and

a correct score). The characteristics of the errors that we

find will depend heavily on the underlying representation

we use. We also face the constraint that whatever repre-

sentation we use must be suitable for input into a machine-

learning model, preferably as a sequence; this disqual-

ifies the use of methods that operate on hierarchically-

structured MusicXML data [17, 18].

A piano roll-like representation, representing a snip-

pet of music as a two-dimensional image, easily ad-

mits a difference operation by way of taking the pixel-

wise difference of two two-dimensional piano rolls, but

is memory-intensive for long inputs. Another possibil-

ity would be to use a token-based representation such as

NoteTuple [19], which represents polyphonic music as an

ordered list of multi-valued tokens; for example, a piece

might be represented as a sequence of triples of the form

(MIDI Pitch, Onset Time, Duration). This

kind of representation is common in deep learning appli-

cations, and there exist many notions of difference on one-

dimensional sequences that could be adapted. However, to

align with our goal of localizing errors, it would be better

for each unit of our representation to contain as little in-

formation as possible, so that in calling a single element

erroneous we pinpoint the location of the error down to a

smaller region in the score.

To accomplish this, and to choose a representation that

matches the domain of OMR, we opt to use an agnostic

representation [20]. An agnostic representation of a musi-

cal score lists each of the symbols on a staff without con-

sidering their underlying musical meaning; this stands in

contrast to semantic representations like MusicXML. An

agnostic representation encodes less information per se-

quence element; a dotted eighth note with an accidental

would typically be encoded by a single token in a repre-

sentation like NoteTuple, whereas the accidental, the note,

and the dot would each be a separate element in an agnos-

tic representation, and each could be individually flagged

as an error.

We write our own utility (included with the source code

of this project) to convert Musicxml or Humdrum **kern

files into an agnostic encoding by first parsing them with

the music21 package, and then heuristically defining an

agnostic encoding that matches the resulting textttmusic21

stream. The encoding lists each symbol on a staff in or-

der from left to right. When two or more symbols are in

the same horizontal position (such as when multiple notes

sound simultaneously) we list them in ascending order and

add a caret symbol ˆ between each of them. To handle

multiple staves, we interleave them: a measure of the first

violin, a measure of the second violin, the viola, the bass,

and repeat. This scheme cannot encode all polyphonic mu-

sical scores into unique agnostic representations; staff lines

where two rhythmically distinct polyphonic voices are no-

tated on the same staff may contain unresolvable ambigu-

ities, where it is not clear which notes belong to which

voice. This is not an issue for our task, as we aim not

to generate valid semantically-encoded scores from agnos-

tic representations but only to classify notes in an existing

score.

3.2 Sequence Alignment

To define a difference between two agnostically-encoded

musical excerpts, we use the Needleman-Wunsch (NW)

sequence alignment algorithm [21]. This algorithm takes

as input two sequences and computes the shortest list of

operations necessary to turn one into another, where an op-

eration is defined as insertion, deletion, or replacement of

a sequence element. By comparing a corrected score with

its OMR’ed version, we can see where operations must

be performed in order to correct it. Our strategy will be

to train a model to answer the question: Given a musical

score that contains errors, where would we need to per-

form operations to correct those errors, according to a NW

alignment? We ignore information on which operations

need to be performed. Preliminary experiments showed

degradation in overall performance when our model was

trained to identify the type of error along with its position.

We surmise that to a human corrector, reliable detection of

the location error itself is more important.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

791

(a)

Original OMR Op.

barline.regular barline.regular -
8th.pos2.startBeam - I
accid.pos1.natural accid.pos1.natural -
16th.pos1.continueBeam 16th.pos1.startBeam R
dot.pos-2 dot.pos-2 -
ˆ ˆ -
16th.pos0.endBeam 16th.pos0.endBeam -
dot.pos-1 dot.pos-1 -
ˆ ˆ -
8th.pos1.startBeam 8th.pos1.noBeam R
accid.pos-1.sharp accid.pos-1.natural R
dot.pos-3 dot.pos-3 -
ˆ ˆ -
8th.pos-1.endBeam 8th.pos-1.noBeam R
- 8th.rest D
barline.regular barline.regular -

(b)

Figure 2: (a): A correct score (top) and version with OMR errors (bottom): Mendelssohn’s Quartet No. 1 in E♭ Major Op.

12, Mvt. 2, measure 10, 2nd violin part. (b): The Needleman-Wunsch alignment between the agnostic encodings of the

two scores on the left. The Op. column shows the operations needed to correct the OMR column: Insertion, Replacement,

and Deletion. Note that during training, all these operations will simply be marked as Errors.

Figure 2a contains an illustration of two snippets of mu-

sic: one original and one with OMR errors. Figure 2b

shows the result of their alignment with the NW algorithm.

Our training data will mark each note as an error if it has

an operation assigned to it; for example, the eighth rest at

the end of the OMR snippet in Figure 2a will be marked

as an error in training, since it must be removed to correct

the score. Under this scheme we have no way of flagging

a note as an error if it is not present in the OMR output.

As a workaround, we flag a symbol as erroneous in train-

ing if, to correct the input, it would be necessary to insert

one or more items after that symbol in the sequence. For

example, we would mark the very first barline of the OMR

output in Figure 2b as an erroneous symbol, since there is

a missing 8th.pos2.start immediately succeeding it.

3.3 Dataset and Data Augmentation

Ideally, our dataset would comprise a large, well-curated

corpus of symbolic music in a single genre, each with ac-

companying score files in some image format, and another

dataset containing versions of those score images passed

through an OMR process. We could match up each sym-

bolic music file with its OMR’ed counterpart and perform

an NW alignment between them. Then, during training,

the OMR’ed symbolic music would be the input to our

model, and the resulting alignment would be our target.

To our knowledge, there are no large, publicly available

sources of data that match these requirements. Datasets in-

tended for training OMR systems do not include erroneous

OMR outputs, as their purpose is to aid in developing the

OMR process itself. Given a set of scores in symbolic

and image formats, we could automate a OMR application

to process a new dataset in this way, but the commercial

OMR software available to us does not have the requisite

batch processing functionality that would make this feasi-

ble. Instead, we take a small dataset of symbolic music

files paired with their OMR’ed counterparts, and supple-

ment it with a large dataset containing music of the same

genre, but without accompanying OMR’ed files. We add

synthetic errors to this larger dataset to mimic the natural

errors in the small dataset.

Our main dataset, from which we derive natural OMR

errors, is a set of Mendelssohn’s string quartets compris-

ing 24 movements [22], containing a total of 175 thou-

sand tokens when encoded agnostically. This dataset con-

tains OMR’ed versions of each movement generated using

the PhotoScore software, partially-corrected versions of

the OMR’ed files for each movement, and fully-corrected

versions of each movement. The OMR’ed files contain

a high proportion of errors; the character error rate be-

tween the fully-corrected and uncorrected files is 0.29, and

the same statistic for the partially-corrected files is 0.11 2 .

We supplement this with a corpus of the string quartets

of Beethoven, Haydn, Mozart, and Schubert, taken from

KernScores 3 and the Annotated Beethoven Corpus [23],

comprising a total of 361 movements and a total of 9.25

million agnostic tokens. It would be ideal to focus specifi-

cally on a single era of music, but we posit that for the sake

of ease of training, consistency in instrumentation (restrict-

ing ourselves to only string quartets) is a more important

consideration.

To augment the dataset, we add errors to the agnos-

tic representation of our dataset in a way that mimics

how natural OMR errors are distributed in the smaller

dataset. To this end, we set aside a small portion of the

Mendelssohn string quartet dataset and run a NW align-

ment between these snippets and their manually-corrected

versions. From these alignments we can obtain statistics

2 This statistic may sound high compared to the number of errors
shown in Figure 1. This is explained by the verbosity of agnostic en-
codings; something that looks intuitively like a single error on the page
may actually constitute several.

3 http://kern.ccarh.org/

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

792

Precision on raw OMR Output Precision on partially corrected OMR

R = 0.80 R = 0.90 R = 0.95 R = 0.99 R = 0.80 R = 0.90 R = 0.95 R = 0.99

Baseline LSTUT 0.49 0.47 0.47 0.46 0.33 0.32 0.31 0.31

Architectures

LSTM 0.49 0.47 0.47 0.46 0.11 0.11 0.10 0.10

Transformer 0.51 0.50 0.50 0.49 0.14 0.12 0.12 0.10

Synthetic Errors

Random 0.47 0.46 0.46 0.45 0.10 0.10 0.10 0.10

50% fewer errors 0.53 0.51 0.50 0.46 0.10 0.10 0.10 0.09

Sequence Length

64 0.47 0.47 0.46 0.45 0.10 0.10 0.10 0.09

128 0.49 0.47 0.47 0.46 0.10 0.10 0.10 0.09

512 0.50 0.49 0.49 0.48 0.11 0.10 0.10 0.10

1024 0.56 0.51 0.51 0.50 0.11 0.11 0.11 0.11

Table 1: A table comparing precision scores for given recall (R) scores on our error detection task. The ªBaselineº model

uses an LSTUT, synthetic errors made with our data augmentation method described in Section 3.3, and a sequence length

of 256. Each section of the table changes a single variable from the baseline.

on how each type of symbol tends to be affected by the

OMR process. For example, in the OMR process, the sym-

bol rest.quarter remains the same with probability

0.527, is deleted with probability 0.142, is replaced with an

eighth rest with probability 0.013, and so on. We use these

statistics as a probability distribution, sampling from it for

every single symbol in an agnostically-encoded piece, and

then apply the resulting operation to each symbol.

This is a highly simplified model of how OMR intro-

duces errors. It does not take into account the effects of ad-

jacent symbols on one another, or how errors tend to group

together on parts of a page that are badly scanned or dam-

aged. However, we have a small amount of real OMR data

to work from, which we plan to use for validation and test-

ing, so we cannot spare much for the purpose of training

the error generator. A more sophisticated error-generation

model would likely overfit on such a small fraction of this

dataset.

We train with the large dataset augmented with syn-

thetic errors, reserving our dataset of Mendelssohn string

quartets containing natural OMR errors for validation and

testing. Each batch of training data in agnostic format is

tokenized and is augmented with errors. Then, each train-

ing example in the batch is NW-aligned with its correct

version (Section 3.2), and the alignment results are used

to create a sequence of binary flags (error or no error) the

same length as the training example. We train the model

using the synthetic training data as input and these binary

flags as the target. Validation and testing follow the same

process but use existing OMR’ed data instead of adding

synthetic errors.

4. EXPERIMENTS

As a baseline model, we employ the Long Short-Term

Universal Transformer (LSTUT) [24] as an encoder-only

model. This architectre consists of a 4-layer Univer-

sal Transformer [25] (a Transformer network where all

the layers share the same weights) with 5 self-attention

heads, bookended by two bidirectional Long Short-Term

Memory (LSTM) layers in lieu of the positional encoding

scheme used by vanilla Transformers. This architecture

was designed specifically to learn from short- and long-

term repetitive musical structure, and outperformed other

variants tested on our tasks. We use the linear self-attention

mechanism by Vyas et al. [26], implemented as part of

their fast-transformers package for use with the

Pytorch deep learning framework; this is a modification to

the vanilla Transformer network with memory usage that

scales linearly with input size instead of quadratically. The

source code for our full workflow is available on GitHub 4 .

We test on two alternate architectures: a bidirectional

LSTM and a vanilla Transformer. In the baseline LSTUT,

the LSTM layers and attention heads all have an inter-

nal hidden dimension of 128. The LSTM network uses

four layers, each with a hidden dimension of 512, and the

vanilla Transformer network has 6 layers each containing

4 self-attention heads, all with a hidden dimension of 128.

All models end in a fully-connected layer that reduces each

sequence element down to a single dimension. We de-

signed these architectures such that all would have a simi-

lar number of trainable parameters (around 8 million).

We also test on different input sequence lengths, and

the type of synthetic errors used for data augmentation; the

ªRandomº run applies uniformly random deletions, inser-

tions, and replacements in the training data, and the ª50%

fewerº run uses our statistically-informed data augmenta-

tion scheme but only adds half as many errors, which we

use to see if it improves performance on partially-corrected

OMR. All models were trained with early stopping based

on validation loss, using four NVIDIA P100-PCIE GPUs

with a combined 48 GB of memory. When testing dif-

4 github.com/timothydereuse/transformer-

omr-spellchecker

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

793

Figure 3: An excerpt from Mendelssohn’s String Quartet in E♭ Major, Op. 12, Mvt 1, mm. 212-217 (1st violin part). The

upper staff contains the original excerpt, and the bottom one contains OMR errors, along with the predictions of our model.

Notes marked in red are errors that our model correctly identified, those marked in blue are errors that our model missed

(false negatives), and those marked in grey are correct notes that our model marked as erroneous (false positives). Keep in

mind that a correct note may be marked as erroneous if, to correct the score, one needs to insert a symbol after it.

ferent sequence lengths, we alter the batch size so as to al-

ways use the entirety of the available GPU memory. Lastly,

we test on two different sets of data: one is the OMR’ed

Mendelssohn quartets, and one is the same quartets after a

single pass of human review. This second test set allows

us to see if the model can detect the kinds of errors that

humans miss when reviewing a score.

In testing, we must apply a threshold to the raw out-

put of the network to turn it into a binary prediction. A

common way to do this is to choose a threshold that max-

imises F1 score on the validation set and then apply that

threshold to the test set. However, since we seek to max-

imise precision given a recall score near 1.0, we instead fix

several scores for recall, and report the corresponding pre-

cision scores on the test set for those thresholds. We antic-

ipate that in a real error-correction scenario, a user would

be able to set a threshold themselves based on their toler-

ance for error; such forms of user interaction are common

in high-recall information retrieval applications [27].

4.1 Results and Discussion

Table 1 shows a summary of our results. The Baseline

model uses an LSTUT, synthetic errors generated with our

data augmentation method, and an input sequence length

of 256. We show the precision scores associated with

different recall scores to represent different tolerances for

missed errors. For example, our baseline model has a pre-

cision of 0.47 when the recall is 0.9, meaning that if a user

wishes to be sure that 90% percent of the errors are caught,

then 53% of the model’s detections will be false positives.

The LSTUT model performs slightly better than the

LSTM and the vanilla Transformer, though this perfor-

mance difference is most notable at lower recall scores.

Our statistically-informed error generation method outper-

forms the addition of random errors. At the highest recall

score (R=0.99), our best precision score is 0.50, which we

obtain at a sequence length of 1024. Precision drops only

slightly as our target recall score increases, indicating that

a significant fraction of each string quartet is deemed to

be correct, and is ignored by the model with high confi-

dence. Our models to perform well at identifying single

errors surrounded by correct musical content, while long

runs of errors, common in OMR’ed passages with tightly-

spaced notes, are sometimes ignored. This may be a con-

sequence of how our data augmentation method does not

produce dense clusters of errors.

All models performed poorly on detecting errors in the

partially-corrected files, though the vanilla Transformer

network did marginally better. Examining our results, we

note that our model struggles to notice the absence of el-

ements like articulations and accidentals; these kinds of

omissions comprise a majority of the errors in the partially-

correct OMR files.

Figure 3 shows a violin passage from a Mendelssohn

quartet and its OMR’ed version, indicating where our base-

line model (at 0.90 recall) predicts errors. A common ten-

dency of our method is illustrated here: when the model

cannot pin an error to one single symbol definitively, it

will mark a region around the error as erroneous (e.g., the

many false positives in measures 4±5 of the excerpt). False

negatives do happen (e.g., the missing staccato markings

in measure 2), but when notes are missing or inserted, the

model tends to make a detection that is at least in the vicin-

ity of the true error.

5. CONCLUSION

For a machine-learning method to be useful in low-

resource situations, such as those faced by many archivists

and musicologists trying to make long-neglected music

more accessible, it must perform a task consistently, given

a small amount of data, and be easily generalizable. For

this reason we have set ourselves a simple task, in hopes

that we can perform it reliably. Even a low precision score

may be helpful to a corrector if errors are rare; if our

method flags 50% of the score as potentially erroneous,

that halves the amount of material the human must check.

While our method achieves a reasonable amount of

precision on Mendelssohn’s string quartets, we have not

proven that it can actually reduce OMR correction time.

It would be useful to find ways of evaluating this type of

system that speak more directly to its utility for human cor-

rectors; for example, by using the results of experiments by

Pugin et al. [28] that test how long it takes to correct dif-

ferent types of errors. We plan to integrate our method into

an existing notation application or correction interface, to

see how it can best aid the symbolic encoding process.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

794

6. REFERENCES

[1] D. Rizo, J. Calvo-Zaragoza, and J. M. Iñesta,

ªMuRET: A Music Recognition, Encoding, and Tran-

scription Tool,º in Proc. of the 5th Int. Conf. on Digi-

tal Libraries for Musicology. New York, NY: ACM,

2018, pp. 52±56.

[2] M. Alfaro-Contreras, D. Rizo, J. M. Iñesta, and

J. Calvo-Zaragoza, ªOmr-Assisted Transcription: A

Case Study with Early Prints,º in Proc. of the 22nd Int.

Society for Music Information Retrieval Conf., Online,

2021.

[3] A. Daigle, ªEvaluation of Optical Music Recognition

Software,º Master’s thesis, McGill University, 2020.

[4] J. Hajic Jr, J. Novotný, P. Pecina, and J. Pokorný, ªFur-

ther Steps Towards a Standard Testbed for Optical Mu-

sic Recognition.º in Proc. of the 17th Int. Society for

Music Information Retrieval Conf., New York, NY,

2016.

[5] D. Byrd and J. Simonsen, ªTowards a Standard Testbed

for Optical Music Recognition: Definitions, Metrics,

and Page Images,º Journal of New Music Research,

vol. 44, Jul. 2015.

[6] F. Rossant and I. Bloch, ªRobust and Adaptive OMR

System Including Fuzzy Modeling, Fusion of Musical

Rules, and Possible Error Detection,º EURASIP Jour-

nal on Advances in Signal Processing, vol. 2007, no. 1,

2006.

[7] A. McLeod, J. Owers, and K. Yoshii, ªThe MIDI

Degradation Toolkit: Symbolic Music Augmentation

and Correction,º arXiv:2010.00059 [cs, eess], 2020.

[8] A. Ycart, D. Stoller, and E. Benetos, ªA Compara-

tive Study of Neural Models for Polyphonic Music Se-

quence Transduction,º in Proc. of the 19th Int. Society

for Music Information Retrieval Conf., Delft, Nether-

lands, 2019.

[9] K. Sidorov, A. Jones, and D. Marshall, ªMusic Anal-

ysis as a Smallest Grammar Problem,º in Proc. of

the 15th Int. Society for Music Information Retrieval

Conf., Taipei, Taiwan, 2014.

[10] Y. Wang, Y. Wang, J. Liu, and Z. Liu, ªA Com-

prehensive Survey of Grammar Error Correction,º

arXiv:2005.06600 [cs.CL], p. 35, 2020.

[11] N. Madi and H. S. Al-Khalifa, ªGrammatical Error

Checking Systems: A Review of Approaches and

Emerging Directions,º in Proc. of the Thirteenth Int.

Conf. on Digital Information Management. Berlin,

Germany: IEEE, 2018, pp. 142±147.

[12] D. Naber, ªA Rule-Based Style and Grammar

Checker,º Doctoral Thesis, Universität Bielefeld,

2003.

[13] T. Ge, F. Wei, and M. Zhou, ªReaching Human-level

Performance in Automatic Grammatical Error Correc-

tion: An Empirical Study,º arXiv:1807.01270 [cs],

2018.

[14] C. Brockett, W. B. Dolan, and M. Gamon, ªCorrecting

ESL Errors Using Phrasal SMT Techniques,º in Proc.

of the 21st Int. Conf. on Computational Linguistics and

the 44th annual meeting of the ACL, Sydney, Australia,

2006, pp. 249±256.

[15] A. Rozovskaya and D. Roth, ªTraining Paradigms for

Correcting Errors in Grammar and Usage,º in Human

Language Technologies: The 2010 Annual Conf. of the

North American Chapter of the Association for Com-

putational Linguistics, Los Angeles, CA, 2010.

[16] P. M. Htut and J. Tetreault, ªThe Unbearable Weight

of Generating Artificial Errors for Grammatical Error

Correction,º arXiv:1907.08889 [cs], 2019.

[17] F. Foscarin, F. Jacquemard, and R. Fournier-S’niehotta,

ªA Diff Procedure for Music Score Files,º in Proc. of

the 6th Int. Conf. on Digital Libraries for Musicology.

The Hague, Netherlands: ACM, 2019, pp. 58±64.

[18] I. Knopke and D. Byrd, ªTowards MusicDiff: A Foun-

dation for Improved Optical Music Recognition Using

Multiple Recognizers,º in Proc. of the 8th. Int. Society

for Music Information Retrieval Conf., Vienna, Aus-

tria, 2007.

[19] C. Hawthorne, A. Huang, D. Ippolito, and D. Eck,

ªTransformer-NADE for Piano Performances,º in

Proc. of the 32nd Conf. on Neural Information Pro-

cessing Systems, Montreal, Canada, 2018.

[20] D. Rizo, J. Calvo-Zaragoza, J. Iñesta, and I. Fuji-

naga, ªAbout Agnostic Representation of Musical Doc-

uments for Optical Music Recognition,º in Proc. of the

Music Encoding Conf., Tours, France, 2017.

[21] S. B. Needleman and C. D. Wunsch, ªA General

Method Applicable to the Search for Similarities in the

Amino Acid Sequence of Two Proteins,º Journal of

Molecular Biology, vol. 48, no. 3, pp. 443±453, 1970.

[22] J. Degroot-Maggetti, T. de Reuse, L. Feisthauer,

S. Howes, Y. Ju, S. Kokobu, S. Margot,

N. Nápoles López, and F. Upham, ªData Qual-

ity Matters: Iterative Corrections on a Corpus of

Mendelssohn String Quartets and Implications for

MIR Analysis,º in Proc. of the 21st Int. Society for

Music Information Retrieval Conf., Montreal, Canada,

2020.

[23] M. Neuwirth, D. Harasim, F. C. Moss, and

M. Rohrmeier, ªThe Annotated Beethoven Corpus

(ABC): A Dataset of Harmonic Analyses of All

Beethoven String Quartets,º Frontiers in Digital Hu-

manities, vol. 5, p. 16, 2018.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

795

[24] J. de Berardinis, S. Barrett, A. Cangelosi, and

E. Coutinho, ªModelling Long- and Short-Term Struc-

ture in Symbolic Music with Attention and Recur-

rence,º in Proc. of the 1st Joint Conf. on AI Music Cre-

ativity, Stockholm, Sweden, 2020.

[25] M. Dehghani, S. Gouws, O. Vinyals, J. Uszko-

reit, and è. Kaiser, ªUniversal Transformers,º

arXiv:1807.03819 [cs, stat], 2019.

[26] A. Vyas, A. Katharopoulos, and F. Fleuret,

ªFast Transformers with Clustered Attention,º

arXiv:2007.04825 [cs, stat], 2020.

[27] H. Zhang, M. Abualsaud, N. Ghelani, M. D. Smucker,

G. V. Cormack, and M. R. Grossman, ªEffective User

Interaction for High-Recall Retrieval: Less is More,º

in Proc. of the 27th ACM Int. Conf. on Information and

Knowledge Management, Torino, Italy, 2018, pp. 187±

196.

[28] L. Pugin, J. A. Burgoyne, and I. Fujinaga, ªReducing

Costs for Digitising Early Music with Dynamic Adap-

tation,º in Research and Advanced Technology for Dig-

ital Libraries, L. Kovács, N. Fuhr, and C. Meghini,

Eds. Berlin: Springer Berlin Heidelberg, 2007, vol.

4675, pp. 471±474.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

796

