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ABSTRACT

Recent advances in deep learning not only facilitate the

implementation of zero-shot singing voice synthesis (SVS)

and singing voice conversion (SVC) tasks but also provide

the opportunity to unify these two tasks into one gener-

alized model. In this paper, we propose such a model

that generate the singing voice of any target singer from

any source singing content in either text or audio format.

The model incorporates self-supervised joint training of

the phonetic encoder and the acoustic encoder, with an

audio-to-phoneme alignment process in each training step,

such that these encoders map the audio and text data re-

spectively into a shared, temporally aligned, and singer-

agnostic latent space. The target singer’s latent repre-

sentations encoded at different granularity levels are all

trained to match the source latent representations sequen-

tially with the attention mechanisms in the decoding stage.

This enables the model to generate unseen target singer’s

voice with fine-grained resolution from either text or au-

dio sources. Both objective and subjective experiments

confirmed that the proposed model is competitive with the

state-of-the-art SVC and SVS methods.

1. INTRODUCTION

Singing voice generation is an innovative technology in

contemporary music and multimedia content production.

There are two major approaches to singing voice genera-

tion, which are 1) singing voice synthesis (SVS) [1±7] and

2) singing voice conversion (SVC) [8±12]. SVS features

generation from a given musical score and lyrics (texts)

and SVC from the given content (e.g., pitch, rhythm) of a

source audio recording. Both approaches aim at imitating

the performance style (e.g., expression, timbre) of a target

singer’s recordings in the generation result. In recent years,

the SVS and SVC tasks have both witnessed a great im-

provement thanks to the advances in deep learning. Train-

ing a model that generates singing voice in different singer
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identities is no longer an issue. However, most of these

works only support the generation of preset singers’ voice,

and learning the voices of new singers usually requires a

sufficient amount of data to fine-tune the model [4, 7].

A practical singing voice generation system requires the

capability to adapt to arbitrary singers, also known as the

zero-shot scenario. Recent works on zero-shot SVC/SVS

have utilized speaker encoders which pretrained on speaker

verification tasks [13, 14] to generate speaker embeddings

that enable the system to adapt to unseen singers’ voices

[15±17]. However, this approach has proven insufficient

for unseen voice adaptation in recent speech generation

studies. An advanced zero-shot voice conversion (VC)

and text-to-speech (TTS) approach have utilized the atten-

tion mechanism to extract target speaker information from

reference audio according to the desired content [18, 19],

which outperforms the speaker encoder method [20, 21].

Such advances show potential in zero-shot singing voice

generation, which is more challenging than VC and TTS

due to the high variation of pitch, timbre, and expression

in the singing voice, as well as the lack of publicly avail-

able datasets containing a large number of singers. These

issues hinder a zero-shot singing voice generation model

from sufficient generalization.

Recently, a semi-supervised SVS model combining an

acoustic encoder and a phonetic encoder is proposed to

deal with both audio and text inputs [7]. Jointly train-

ing the two encoders allows the SVS model to learn new

singing voice identities in the fine-tuning stage with audios

without text annotation. This approach provides new per-

spectives of zero-shot singing voice generation: from the

aspect of technical concerns, joint training of both audio

and phonetic encoders might improve the generalizability

of zero-shot SVS/SVC; from the aspects of the application,

SVS and SVC are no longer regarded as independent but

unified into one task.

While [7] only supports SVS for preset singers’ voice,

in this paper we propose a unified model for SVC and SVS,

which is able to generate arbitrary singing voice by either

text or audio input. In addition, the system does not re-

quire well-aligned lyrics for synthesis since the phoneme

duration is learned in a self-supervised manner. We utilize

the attention mechanism to extract the target singer infor-

mation, and introduce two variations of implementation,

depending on the similarity or naturalness of the generated
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audio. Results show that for both SVC and SVS on unseen

singers, the proposed model outperforms state-of-the-art.

2. METHOD

Figure 1 illustrates the whole diagram of the proposed sys-

tem. The left side of the diagram (blue part) is the source

encoder, which encodes the content information of the de-

sired output from either audio or text input. It contains

an acoustic encoder (Ea) which encodes the spectrogram

and a phonetic encoder (Ep) which encodes the phoneme

sequence. The monotonic alignment search (MAS) mod-

ule [22] encourages the output latent spaces of the two en-

coders to be in a similar distribution such that the phoneme

embeddings are temporally aligned with the spectrogram.

SVC or SVS can be achieved by choosing which encoder

output to process. On the right side of the diagram, the

target encoder (Et) encodes the spectrograms of the target

singer’s audios into singer information, where the decoder

(D) fuses it into the content information and generates the

final output. The functions of all these building blocks will

be introduced hereafter in this section.

2.1 Source encoder

Inspired by [7], our source encoder supports joint training

for both audio and text inputs. The audio input xs ∈ R
ta×n

is the log-scale mel-spectrogram of an input audio segment

from the source singer s, where ta is the number of frames

and n = 80 is the number of mel-bands. The text input ps,

which is corresponding to xs is a phoneme index sequence

with the length of tp.

The acoustic encoder Ea maps xs to a latent representa-

tion za ∈ R
ta×d of source audio, where d is the dimension

of this latent representation. Two methods are adopted to

train the singer-agnostic za. First, we employ a singer clas-

sifier C, which works as a domain confusion network [8]

that attempts to predict the one-hot singer embedding s
from za in a frame-by-frame manner by minimizing the

loss function LC := CE(C(za), s), in which CE is the cat-

egorical cross-entropy. On the other hand, Ea is trained by

maximizing LC by using a gradient reversal layer. Second,

after having za from Ea, we add Gaussian noise N (0, α)
to za to prevent Ea from overfitting the mel-spectrogram

details and to encourage the stability of phoneme embed-

ding [7]. We set α = 0.1 in this paper.

The phonetic encoder Ep firstly maps ps to a phonetic

latent space zp ∈ R
tp×d at one of its intermediate layer.

Then, the MAS module [22] is adopted to find the align-

ment between the acoustic embedding and the phonetic

embedding and obtains the duration of each phoneme,

which is required in the synthesis stage. Denote each

frame of zp as zp,i for i = 1, · · · tp. Each zp,i is fed

into a linear layer which outputs a phonetic prior distribu-

tion ẑp,i ∼ N (µi, σi). In the MAS process, the phoneme

prior distribution sequence ẑp := {ẑp,i}tpi=1 is aligned to

za by finding the monotonic and surjective alignment path

A : [1 : ta] → [1 : tp] such that the objective function

Lmle :=

ta
∑

j=1

logN (za,j ;µA(j), σA(j)) (1)

is maximized. N (z;µ, σ) is the likelihood function of a

Gaussian variable z parametrized by µ and σ. In each

training step, the alignment path is first searched by the

Viterbi algorithm, and then the maximum likelihood esti-

mation over this path updates the parameters. ẑp there-

fore approximates za iteratively along the training process.

The optimal alignment path A∗ indicates the temporal du-

ration d∗ := {d∗i }
tp
i=1 of every phoneme ps,i in terms of

frames, such that the texts could be well aligned with the

log-scale mel-spectrogram.To avoid inaccurate pronuncia-

tion of the generated voice in some words, we duplicate

expand zp,i by d∗i frames and pass it into the downstream

layers of Ep, which finally outputs the phonetic latent rep-

resentation z∗p ∈ R
ta×d. To encourage the audio and the

phoneme models to encode common information, the l2
loss between z∗p and za is minimized.

Lenc := ∥z∗p − za∥22 . (2)

The final source embedding z is obtained by randomly

switching between z∗p and za, that means,

z = kz∗p + (1− k)za (3)

where k ∼ Bernoilli(0.5).

To encode the pitch information, we extract the F0 con-

tours of the source audio data using CREPE [23] and repre-

sent them in terms of MIDI pitch numbers. In preliminary

experiments, we found that the output of CREPE caused

inconsistent spikes in some audio segments. Therefore, we

apply a median filter with the size of three to remove the

noise, and obtain our input pitch sequence fs. fs is then

converted to a sequence of pitch embedding and concate-

nated with z as the decoder input.

2.2 Target encoder

Similar to Ea, the target encoder Et is also constructed

mainly with stacking three Conv Blocks (see Figure 1 for

the diagram of a Conv Block). Et takes the log-scale

mel-spectrogram xt of the audio segments from the target

singer’s corpus as input and then outputs timbre features

with different granularity levels from each Conv Block.

D then processes singer information following the order

from the highest to the lowest level. Inspired by [19], these

Conv Blocks in Et are linked to the Style-Adaptive Layer

Normalization (SALN) Feed Forward Transformer (FFT)

blocks [24,25] in the decoder D (see Figure 2 Section 2.3),

resembling the encoder-decoder pathway in the U-net [26].

2.3 Decoder

The decoder D incorporates two decoding steps. First, the

feature transformation module fuses the target singer in-

formation into the content latent representation. Second,

the mel-spectrogram generator reconstructs the log-scale
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Figure 1. The architecture of the proposed model.

mel-spectrogram. The architecture of the feature transfor-

mation module is the same as in [25], in which the layer

normalization layer in the FFT block [24] is replaced by a

SALN layer [25]. Given an intermediate output h of the

FFT and the target singer information w, the SALN opera-

tion can be formulated as follows:

y = g(w)⊙ LayerNormalization(h) + f(w) , (4)

where g and f are both linear layers and ⊙ denotes

element-wise multiplication.

The mel-spectrogram generator is comprised of two

stacked FFT blocks and three output linear layers linked

from the input/output nodes of the FFT blocks. This is

similar to the idea of post-network [20, 27] using the FFT

and linear layer [6, 24]. Each of the linear layers then out-

puts the log-scale mel-spectrogram. The outputted mel-

spectrograms are denoted as x̂t,1, x̂t,2, and x̂t,3. Dur-

ing training, suppose xs is the ground-truth log-scale mel-

spectrogram and the decoder is trained to minimize the av-

erage mel-spectrogram l2 reconstruction loss:

Lrecon :=
1

3

3
∑

i=1

∥xs − x̂t,i∥22 . (5)

2.4 Extractor

The extractor is an attention and layer normalization

block 1 that connects each pair of Conv Block of Et and

the SALN FFT block of D, as shown in the right side of

Figure 1. The extractor controls the mapping from the

latent representation of the target singer outputted from

the Conv Blocks of Et to the latent representations of the

source utterance such that they are structurally aligned. In

other words, the attention mechanism guides Et to extract

the local timbre/style patterns that match the hidden latent

states of D layer by layer in the training process [19].

1 The affine transformation is removed in this block.

Figure 2. The SALN FFT block (right) with the Extractor

(left). For the FFT blocks not using the SALN layers (e.g.,

the FFT blocks in Ep), the SALN layer is replaced by a

layer normalization layer.

The processing of the extractor is illustrated in Figure 2.

Let q be the input of one SALN FFT block of D and r be

the latent representation of the target from its correspond-

ing Conv Block of Et. Each frame of q attempts to find

local timbre/style patterns in r that have a similar structure

to itself. And by aggregating them together, the extrac-

tor outputs an aligned local timbre/style representation w.

More specifically, the attention mechanism is as follows:

Q = qWq , K = rWk , V = rWv ,

w = softmax

(

QKT

√
d

)

V , (6)

where Wq , Wk and Wv are learnable parameters.

It should be noted that for each generated result, its cor-

responding w and also r are usually learned from the con-

catenation of multiple target audios, which is a strategy for

training speech synthesis and conversion systems [18, 19].

However, such a strategy still tends to generate discon-

tinuous outputs in SVS and SVC, especially when deal-
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ing with unseen singers. This is because singing exhibits

much more diverse and combined expressions than speak-

ing. Under this situation, an effective extractor should be

able to recombine the features of various expressions from

different audio recordings into a sentence. The softmax

function in (6), however, fails to achieve this since it tends

to give parsimonious attention maps.

To alleviate the situation mentioned above, we adopt the

idea from video style transfer [28], which used an alterna-

tive way of computing the attention map by changing the

Softmax function in Equation (6) to cosine similarity. The

cosine similarity attention can be represented as:

Mi,j =
Si,j

∑

j Si,j

, Si,j =
Qi ·Kj

∥Qi∥∥Kj∥
+ 1 ,

w = MV , (7)

where Qi and Kj are the ith frame of Q and jth frame

of K respectively, and Mi,j is the (i, j)th element of the

resulting new attention map M . Since the softmax func-

tion may overemphasize the contents of vocal fragments

with similar phonetic structures [28], using cosine similar-

ity ensures that the model combines much more diversified

timbre structures and generates a smoother output.

2.5 Discriminator

Over-smoothing of the mel-spectrogram predictions is a

common problem in singing voice generation due to the

use of the reconstruction loss [29]. Like many previous

studies, we add a discriminator (denoted as Disc) at the

output stage of our model to alleviate this problem.

The discriminator architecture we use is similar to [30]

but with two slight modifications. First, we remove the

conditional projections that were intended to make pre-

dictions for multiple singers, and second, we divide the

number of channels by 4 to balance the generator and dis-

criminator performances. The input of the discriminator

is a 128-frame mel-spectrogram segment randomly sam-

pled from x̂t,3, and the output is a single value. It should

be noted that x̂t,1 and x̂t,2 are not taken as the input of

the discriminator in our experimental setting. Based on the

principle of the Least Square Generative Adversarial Net-

work (LSGAN) [31], the proposed model is trained with

the adversarial loss Ladv while the discriminator is trained

with the discriminator loss LDisc (a = 0.3 in this paper):

Ladv := (Disc(x̂t,3)− a)2 ,

LDisc := (Disc(x̂t,3))
2 + (Disc(xs)− a)2 . (8)

2.6 Two-phase training process and inference

We adopt the two-phase training process [7] to train the

whole system. During phase one, the source encoder and

D are jointly trained. Since Et and the extractors are inac-

tive in this phase, the latent representation of target singer

w is set to a fixed-size 1-dimensional vector, which is de-

rived from a singer embedding lookup table followed by

two linear layers with ReLU activation. The 1-dimensional

Dataset d p d/p Type Text

MPOP600 10 4 150 singing ✓

Musdb-V 2.3 86 1.6 singing ✗

NUS-48E 2.8 12 14 singing/speech ✓

VCTK 44 109 24.2 speech ✓

Table 1. The datasets employed in this paper. From left

to right: dataset name, total duration (d, in hours), number

of speaker/singer (p), average duration per speaker/singer

(d/p, in minutes), type of content (singing, speech, or

both), and the availability of text labels.

w is then expanded to ta frames and fed into the SALN

module. The total loss during this phase is as follows:

LPhase-I := Lrecon + λencLenc − λmleLmle − LC , (9)

where the last two terms of the equation use a minus sign to

represent maximization, and LC is also used for updating

C. We set the loss weights with λenc = 0.5 and λmle = 0.1.

During phase two, Et, D, and the extractors are jointly

trained, while the parameters of the source encoder are

fixed. For the input of Et, we randomly sampled 5 utter-

ances from the source singer s and concatenate their log-

scale mel-spectrogram along the time axis as xt. The total

loss for updating the model during this phase is as follows:

LPhase-II := Lrecon + Ladv , (10)

and the discriminator Disc is updated by LDisc.

The process of randomly switching (see Equation (3)) is

applied in both phases, and for the utterance without tex-

tual notation, we directly pass za as z, letting the corre-

sponding loss functions Lenc and Lmle not counted.

During inference, we specify either z∗p or za as z, de-

pending on whether SVS or SVC is to be performed. xt

can be multiple utterances of a target singer. Since the

input pitch fs may not be within the target singer’s pitch

range, we shift fs by the difference in median pitches:

fshift = fs − median(fs) + median(ft) , (11)

where ft is the pitch sequence of xt and fshift is the shifted

pitch for model input [15]. We take the last layer output

x̂t,3 of the model as the resulting mel-spectrogram.

3. EXPERIMENTAL SETUP

3.1 Datasets

Four public datasets are used in our experiment. First, the

MPOP600 [32] dataset contains 600 Mandarin pop songs

sung by two male and two female vocalists. Second, the

NUS-48E [33] dataset consists of 48 English popular songs

performed by 12 singers. Third, the VCTK corpus [34] is a

multi-speaker speech dataset for TTS and voice conversion

tasks and has been widely used in many singing voice gen-

eration systems.Finally, Musdb-V is the vocal tracks man-

ually collected from MUSDB18 [35], a dataset for music
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source separation, containing 150 songs in different gen-

res along with their isolated drums, bass, vocals, and other

stems.Details of these datasets are listed in Table 1. The

total duration of the data achieves 59.1 hours.

We randomly select 10 singers from Musdb-V as our

test set; they are the so-called unseen singers during train-

ing. The remaining data are then partitioned into train-

ing and validation sets by 95:5 for each singer/speaker.

All the audios are resampled to 24kHz, and the log-

scale mel-spectrograms with 80 bins are computed by

short-time Fourier transformation (STFT) using the size

of Fast Fourier Transform, window size, and hop size of

2,048, 1,200, and 300, respectively. For MPOP600 and

VCTK, we convert the text into phoneme sequence using

pypinyin 2 and phonemizer 3 , respectively. As for NUS-

48E, we use the phoneme labels provided in the dataset.

3.2 Implementation details

The dimension of all hidden layers is set as 128 for the

source encoder and 256 for both D and Et. In each block,

the kernel size in the two-layer 1D-convolution are set to 3

and 1, respectively, and the kernel sizes in the first 1D-

convolution layer of Ea and Et are both set to 3. The

number of attention heads is set to 2. We use the AdamW

optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8, and fol-

low the same learning rate schedule in [19]. Both phase

one and phase two are trained for 250k steps with batch

size being 8, and the discriminator joins the training pro-

cess of phase two after 150k steps. We use Parallel Wave-

GAN (PWG) [36] to convert log-scale mel-spectrograms

to waveforms. The PWG 4 is trained for 1M steps using

MPOP600, NUS-48E and Musdb-V.

3.3 Evaluation methods

We conduct the evaluation with four scenarios: 1) Unseen

SVC, conversion between singers in the test set; 2) Seen

SVC, conversion between singers in the training set; 3)

Unseen SVS, synthesizing singers in the test set from the

utterance in the validation set; 5 and 4) Seen SVS, syn-

thesizing singers in the training set from the utterance of

another speaker/singer also in the training set. In addition,

the VCTK and the speech part of NUS-48E are excluded

from the evaluation. For each round of generation, one ut-

terance of the source singer and five utterances of the target

singer are randomly selected.

For objective evaluation, we use a speaker verification

(SV) system [37] to evaluate the similarity between the tar-

get singer and the generated singing voice. The SV sys-

tem 6 is trained from scratch using all four datasets for

500 epochs. The loss function and the model we use is

AM-Softmax and ResNetSE34L, respectively. The result-

ing model takes an utterance as input and outputs a fix-

dimensional embedding. We then compute the cosine sim-

2 https://github.com/mozillazg/python-pinyin
3 https://github.com/bootphon/phonemizer
4 https://github.com/kan-bayashi/ParallelWaveGAN
5 It should be noted that there is no text annotation in our test set.
6 https://github.com/clovaai/voxceleb_trainer

Model
Unseen Seen

SVC SVS SVC SVS

Baseline SVC 0.059 ± 0.213 ±

Baseline SVS ± 0.084 ± ±∗

Fragment SVC/SVS 0.129 0.122 0.237 0.244

Proposed (S) 0.294 0.232 0.536 0.479

Proposed (S\Disc) 0.257 0.232 0.420 0.398

Proposed (C) 0.115 0.079 0.451 0.446

Table 2. Result of objective evaluation. ∗Result of seen

Baseline SVS is not counted due to the inconsistency of

training data (not supporting text-free training) compared

to other seen SVS models.

Datasets SVC SVS

All 0.290 0.233

w/o MPOP600 0.292 0.225

w/o Musdb 0.178 0.145

w/o MPOP600 and w/o Musdb 0.194 0.149

Table 3. Objective similarity scores with reduced training

data. All four settings are trained with Proposed (S) under

the unseen-to-unseen scenario.

ilarity between the embedding of the generated singing

voice and the average embedding of the five target utter-

ances. The averaged cosine similarity of the randomly gen-

erated 1,000 utterances is then reported.

For subjective evaluation, we conduct a Mean Opinion

Score (MOS) test. For each evaluation scenario, 50 utter-

ances are randomly generated for evaluation. Each par-

ticipant was asked to listen to the source utterance, target

utterances, and the generated audios , and rated the gen-

erated singing voice in terms of two metrics: perceptual

naturalness and similarity to the target. Both metrics are

rated from 1 to 5, with 5 representing the best performance

and 1 being the worst. We report the averaged scores with

the 95% confidence intervals for each model.

3.4 Models for comparison

Three variants of the proposed model are considered in

the evaluation. They are the model using the softmax-

based attention in the extractor (denoted as Proposed (S)),

the model using cosine similarity attention (denoted as

Proposed (C)), and the model without the discriminator

while using softmax-based attention (denoted as Proposed

(S\Disc)). These model variants are used to compare how

the attention types and the discriminator affect the perfor-

mance. Besides, three baseline models are considered and

described as follows.

Fragment (SVC/SVS) is adapted from FragmentVC,

a state-of-the-art voice conversion model which also em-

ploys the softmax attention in the extractors [19].In our im-

plementation, we simply replace the pretrained Wav2Vec

[38] source encoder in FragmentVC with our pretrained

source encoder. The remaining architecture and the train-
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Task Model
Unseen singers Seen singers

Similarity Naturalness Similarity Naturalness

SVC

Baseline (SVC) 3.14± 0.17 3.29± 0.16 3.20± 0.18 3.21± 0.16
Proposed (S) 3.61± 0.16 3.27± 0.17 3.63± 0.16 3.27± 0.16
Proposed (C) 3.56± 0.17 3.53± 0.17 3.70± 0.16 3.46± 0.16

SVS
Baseline (SVS) 3.14± 0.18 2.98± 0.16 3.88± 0.15 3.39± 0.16

Proposed (S) w/o Musdb-V 3.18± 0.17 3.06± 0.17 3.87± 0.15 3.32± 0.17

Table 4. Subjective test of both the SVC and SVS tasks. MOS and the 95% confidence interval are shown for each case.

ing process follow the original implementation.

Baseline (SVC) is adapted from [15], the state-of-the-

art zero-shot SVC model, which is an adaptation of Au-

toVC [20] and uses the WORLD vocoder [39] to synthe-

size the singing voice. In our modification of [15], we

replace the WORLD vocoder with the PWG vocoder by

changing the output layer to generate mel-spectrogram and

concatenating a pitch embedding with the same dimension

of the content encoding. This is to ensure fair comparison

since WORLD vocoder may lead to sound quality degra-

dation in comparison with PWG [40]. During training and

inference, the singer embedding is generated by feeding

the five target utterances to the speaker encoder and aver-

aging the resulting embeddings.

Baseline (SVS) is adapted from the singing model of

DeepSinger, also a state-of-the-art SVS model [6]. In our

implementation, we change the output layer of this model

to generate mel-spectrograms, and the phoneme duration

is extracted by a commonly used open source tool [41].

The major difference between Baseline (SVS) and our pro-

posed model is that the baseline model needs phoneme du-

ration provided by another speech-text alignment system,

while our model estimates phoneme duration directly from

our self-supervised source encoder.

For the objective test, the six models described above

are all compared under the four scenarios. As for the sub-

jective test, to reduce participants’ loading, we only com-

pare Baseline (SVC), Proposed (S), and Proposed (C) for

SVC, and compare Baseline (SVS) and Proposed (S) (w/o

Musdb-V) for SVS. it should be noted that in SVS, Pro-

posed (S) is particularly trained without Musdb-V; this is

again for a fair comparison since Baseline (SVS) does not

support training with text-free data. 7

4. RESULTS

Table 2 shows the objective evaluation results in terms

of similarity score. The three proposed models generally

outperform the baselines. The effectiveness of using the

attention-based extractor is verified by comparing Base-

line SVC/SVS to the other four models. Also, the advan-

7 Since our proposed model allows either audio or text input, we can
surely incorporate the text-free Musdb-V set but train the model for the
SVS task. In our pilot study, we also observed that incorporating Musdb-
V did improve the perceptual quality of SVS results. Such improvement
with Musdb-V is also seen in the ablation study (Table 3). However,
in order not to take advantage of the Baseline (SVS) model, we opt to
degenerate Propose (S) (i.e. without Musdb-V) in our subjective test.

tage of the SALN layer is shown by comparing Fragment

SVC/SVS and Proposed (S). The improvement using the

discriminator is also shown. The softmax-based attention

achieves higher similarity than cosine similarity attention.

Table 3 compares the objective similarity scores trained

on reduced sizes of data for the unseen-to-unseen case.

It shows that the Musdb-V dataset plays a crucial role in

improving the similarity score, and implies that a training

dataset with more singers might benefit from singing voice

generation more than a large dataset in zero-shot singing

voice generation.

Table 4 shows the MOS results responded by 62 sub-

jects for both the SVC and SVS tasks. For the SVC task,

both Proposed (S) and Proposed (C) outperform the Base-

line (SVC) considerably in terms of perceptual similarity

for both seen and unseen cases. As for naturalness, Pro-

posed (C) outperforms both Baseline (SVC) and Proposed

(S) substantially. The cosine similarity attention achieves

better naturalness and verifies the argument that it can bet-

ter combine timbre structures and generate smoother out-

puts, while softmax-based attention achieves better simi-

larity, in line with objective evaluation (see Table 2).

For the SVS subjective test, our degenerated model

(Proposed (S) without Musdb-V) shows results compara-

ble to Baseline (SVS) in general, while it still slightly

outperforms the baseline for both similarity and natural-

ness in the unseen-to-unseen case. Such a comparable re-

sult can be explained by the finding in Table 3: having a

singer-diverse dataset (e.g., Musdb-V) is critical for zero-

shot singing voice generation. Since lyrical annotations are

not always available for such datasets, a unified model that

supports both audio- and text-based training is apparently

more flexible, and could also jointly improve the perfor-

mance of the SVS and SVC models.

5. CONCLUSION

We have presented a unified model which jointly supports

the zero-shot SVC and SVS tasks, and has achieved state-

of-the-art performance on both tasks. Our experiments

also show that the design of the attention mechanism deter-

mines the trade-off between perceptual similarity and nat-

uralness, and that a dataset containing a large number of

singers is critical in improving zero-shot SVS and SVC.

These two directions are suggested for future research on

zero-shot singing voice generation.
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