
MUSIC REPRESENTATION LEARNING BASED ON EDITORIAL
METADATA FROM DISCOGS

Pablo Alonso-Jiménez

Music Technology Group

Universitat Pompeu Fabra

pablo.alonso@upf.edu

Xavier Serra

Music Technology Group

Universitat Pompeu Fabra

xavier.serra@upf.edu

Dmitry Bogdanov

Music Technology Group

Universitat Pompeu Fabra

dmitry.bogdanov@upf.edu

ABSTRACT

This paper revisits the idea of music representation

learning supervised by editorial metadata, contributing to

the state of the art in two ways. First, we exploit the pub-

lic editorial metadata available on Discogs, an extensive

community-maintained music database containing infor-

mation about artists, releases, and record labels. Second,

we use a contrastive learning setup based on COLA, dif-

ferent from previous systems based on triplet loss. We

train models targeting several associations derived from

the metadata and experiment with stacked combinations of

learned representations, evaluating them on standard mu-

sic classification tasks. Additionally, we consider learn-

ing all the associations jointly in a multi-task setup. We

show that it is possible to improve the performance of cur-

rent self-supervised models by using inexpensive metadata

commonly available in music collections, producing rep-

resentations comparable to those learned on classification

setups. We find that the resulting representations based

on editorial metadata outperform a system trained with

music style tags available in the same large-scale dataset,

which motivates further research using this type of super-

vision. Additionally, we give insights on how to preprocess

Discogs metadata to build training objectives and provide

public pre-trained models.

1. INTRODUCTION

Developing robust representations is crucial to improving

the performance of existing supervised Music Information

Retrieval (MIR) tasks on datasets with few annotations.

While conventional approaches are based on classifica-

tion [1±3], other directions include self-supervised strate-

gies [4±9] including leveraging generative models [10],

supervision by editorial metadata [11±15], playlist co-

ocurrences [16], co-listen statistics [15], natural language

text [17], or combinations of them [10,14±16]. While self-

supervised systems are narrowing the performance gap
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with the supervised approaches, the latter seem to be reach-

ing a performance ceiling in the academic research, par-

tially due to the tremendous difficulty to collect larger an-

notated datasets.

Using editorial metadata as a source of supervision was

already considered in other domains, for example, in sci-

entific publication classification [18] or film recommen-

dation [19]. Likewise, music is naturally rich in meta-

data. For example, physical formats typically contain de-

tailed editorial information on their covers, digital audio

files support containers such as ID3 for this purpose, and

most streaming platforms offer album or artist-level brows-

ability. Most music digital service providers routinely re-

quire such metadata from content uploaders, and therefore

it is often available for music collections in the industry

by default. Furthermore, editorial metadata does not suf-

fer from the subjectivity problems common for music tags

and tends to be more consistent. Because of these reasons,

such metadata allows the creation of potentially larger and

less noisy datasets than tag annotations.

Park et al. showed that certain types of editorial meta-

data (artist name) could be used to learn music representa-

tions using the triplet loss [11]. Motivated by their study

and following the recent success of unsupervised represen-

tation learning approaches such as SimCLR [9,20], we are

interested whether modifying such systems to operate with

similarity relations based on editorial metadata improves

the learned features.

Our proposal differs from previous works on metadata-

based music representation learning in two aspects. First,

we use editorial metadata from Discogs, 1 a website

containing an extensive metadata database including the

artists, year, country, record label, and genres/styles of

each release. Discogs publishes monthly dumps of their

data under the Creative Commons CC0 license that we

use to label 3.3 million tracks from our in-house data

collection, allowing us to extract conclusions about sys-

tems trained on large datasets. Second, we adopt a con-

trastive approach already performant in a self-supervised

setup instead of siamese networks. Specifically, we

choose COLA [21] for its simplicity, operating directly on

spectral representations, and requiring no data augmenta-

tion, which makes it efficient and suitable for large-data

regimes. COLA works by maximizing the bilinear similar-

1 https://www.discogs.com/search
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ity between a pair of mel-spectrogram patches (anchor and

positive) cropped from the same audio clip while minimiz-

ing it for the rest of the patches in the batch. We propose to

modify this self-supervised approach by constructing the

anchor/positive pairs according to the different types of

metadata considered (i.e., same track, release, artist, and

record label). Additionally, we explore whether differ-

ent metadata associations generate complementary infor-

mation by combining the embeddings produced by their

respective models and creating multi-task systems jointly

optimized to learn them.

To summarize, we propose investigating the usability of

metadata as an inexpensive source of supervision to train

contrastive feature extractors for music classification. On

top of the original self-supervised COLA approach, we ex-

periment with associations based on editorial metadata to

construct the positive pairs. We report results on public

benchmarking datasets to facilitate comparison with the

SOTA and provide publicly available pre-trained embed-

ding and downstream models.

2. RELATED WORK

This paper combines three ideas: supervision based on ed-

itorial metadata, usage of the Discogs database, and the re-

cent advances in contrastive learning for MIR. In this sec-

tion, we review relevant works on these topics.

2.1 Metadata-based music representation learning

Park et al. shows that the artist name can be used as train-

ing target, with the resulting features being close in perfor-

mance to those obtained from systems trained on crowd-

sourced tags [11]. As the artist information is too sparse

to be learned efficiently in a classification setup, they ap-

proached it as a metric learning task by creating triplets

with anchor and positive samples belonging to the same

artist and a negative sample belonging to a different one.

In a posterior study, they extend the approach to learning

track-, album-, artist-level associations, and a combination

of all, finding that the latter two provide the best represen-

tation [13].

Kim et al. propose dealing with the high dimensionality

of artist vectors by summarizing them into Latent Dirichlet

Allocation topics [22] to create targets suitable for a tradi-

tional classification setup [12]. Other works exploit edito-

rial metadata (release year) among other learning sources

in multi-task setups [14].

2.2 Discogs in MIR research

The Discogs database has already been used for research.

Bogdanov et al. propose using it in the context of music

recommendation [23], MIR, and computational musicol-

ogy [24]. The former study proposes a recommendation

system based on the similarity between artist representa-

tions in the form of a tag cloud of the associated genre,

style, record label, and release year and country metadata.

The latter illustrates the potential uses of the database on

various cultural analysis examples including the evolution

of physical distribution formats, genre and style trends, and

their co-occurrences. Similarly, some studies analyze mu-

sic artist collaboration networks [25±28].

In the context of music genre classification, the Acous-

ticBrainz Genre dataset contains mappings across dif-

ferent music genre taxonomies, including the one from

Discogs [29]. Hennequin et al. use the genre and style

labels from Discogs for genre tag disambiguation [30].

2.3 Contrastive Learning in MIR

The MIR community has lately adopted contrastive learn-

ing approaches, both supervised and self-supervised. Re-

garding supervised methods, Favory et al. use a con-

trastive objective to align embedded representations of tags

and audio [31, 32]. In a subsequent study, the system is

enriched with playlists-track interactions as an additional

modality to align [16].

On the self-supervised side, several contrastive sys-

tems from the computer vision domain have been adapted

and evaluated for music-related tasks. CLMR [5] adapts

SimCLR [20] to operate on waveforms using musically-

meaningful augmentations. BYOL-A [6] relies on the

BYOL [33] framework and adapts it to the audio do-

main by proposing specific augmentations and evaluat-

ing it on several audio tasks, including instrument clas-

sification. S3T [8] combines the MoCo framework [34]

with Swin Transformers [35] to learn music classification

features. Wang et al. [9] modify SimCLR by using a

normalization-free SlowFast [36] backbone and improve

the performance in several audio tasks, including music-

auto-tagging. PEMR [7] deals with the lack of temporal

resolution of existing systems by learning to mask impor-

tant or irrelevant parts of the mel-spectrogram to produce

self-augmented positive/negative samples. COLA [21] is a

simple contrastive model for audio that takes random mel-

spectrogram patches of the same clip instead of augmented

versions of the same patch as anchor/positive pairs. It re-

lies on the bilinear similarity to compute a distance matrix

between all the anchors and positives and uses the categor-

ical cross-entropy loss to maximize the similarity between

correspondent anchor/positive pairs while using the rest of

the positives in the batch as negatives.

We follow a straightforward implementation of COLA,

but instead of relying on the same audio clip (purely self-

supervised), we form the anchor/positive pairs according

to relationships from the metadata. The complete pipeline

is represented in Figure 1 (left). This is, to the best of our

knowledge, the first usage of this framework in the context

of MIR.

3. METHODOLOGY

We are interested in assessing the representation power

of features derived from associations of commonly avail-

able editorial metadata. This goal is motivated by previous

works that already showed the usability of the track, artist,

and album similarities as supervision targets [13]. As these

works already studied the influence of the dataset size and

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

826



data metadata association E

an
ch

or
s

po
si

tiv
es

positives

an
ch

or
s

pair generator

pair gen0 

pair genn

P0

positives

an
ch

or
s

Pn

positives

an
ch

or
s

…ℒ ℒ
…

ℒ0· w0

ℒn· wn

…P E

B

B

B

Figure 1. Overview of the proposed pipelines for a single (left) and multiple tasks (right). E is the encoder, P the projection

head, B are the weights for the bilinear similarity, and L is the loss term. In the multi-task setup, tasks go from 0 to n.

showed a positive correlation with the downstream met-

rics, we will only perform full-size experiments and focus

on unexplored aspects.

In particular, we are interested in imposing tight con-

straints on the pair generation process to emphasize the

differences between the different associations. To formal-

ize our problem, we consider a collection of music where

each song has a track ID (t) and appears in one or more re-

leases (R). Each release is produced by one or more artists

(A) for one or more record labels (L). We define one self-

supervised and three metadata-based associations:

• track association, the anchor and positive samples come

from the same track (self-supervised),

ta = tp

• release association, ta and tp have at least a release in

common,

|R(ta) ∩R(tp)| > 0

• artist association, ta and tp have at least an artist in com-

mon, but they do not appear in the same release,

|A(ta) ∩A(tp)| > 0, and |R(ta) ∩R(tp)| = 0

• label association, ta and tp have at least a record label

in common, but they do not share any artist,

|L(ta) ∩ L(tp)| > 0, and |A(ta) ∩A(tp)| = 0

Note that this approach considerably limits the number

of pairs that can be matches and presumably leads to sub-

optimal representations. However, our goal is to limit the

number of overlapping pairs to emphasize the differences

between associations. For instance, the release associa-

tions would be broadly a subset of the artist ones without

the proposed constraints.

For each association, we generate a dataset of an-

chor/positive pairs. We initialize a pool with all the songs

in the music collection. For each song, we pick a random

pair that complies with the association’s condition and re-

move both from the pool. While this approach does not ex-

ploit every possible association, it gives each track one as-

sociation attempt, which provides us with sufficient train-

ing data for the scope of this work. We also considered

a balanced version of the algorithm (e.g., same number

of tracks per artist) that we discarded as the performance

dropped due to the reduced dataset size without providing

additional insights.

Following our contrastive paradigm, we do not need to

create explicit anchor/negative pairs. For a given anchor,

the rest of the positive samples in the batch are considered

negatives (see Figure 1). While this naive approach implies

that two pairs of tracks associated with the same artist will

be respectively used as negative examples, there is a small

probability of having repeated artists in a batch, and we

ignored this issue. 2

4. EXPERIMENTS

We pre-trained different contrastive systems following the

proposed similarity notions. To evaluate the quality of the

learned representations, we trained shallow classifiers on

different multi-class and multi-label classification tasks.

Additionally, we conducted experiments to understand the

complementarity of such representations.

4.1 Contrastive targets based on Discogs’ metadata

The Discogs database provides publicly available dumps of

their release data that we used to create our training targets.

According to Discogs, a release is ªa broad term for any au-

dio product that is made for general public consumptionº;

albums, singles, or compilations are examples of releases.

Each release entry contains lists of the artists and record la-

bels involved, the year and country of release, and a list of

music genres and styles according to the Discogs’ taxon-

omy. We matched our in-house audio collection to releases

and master releases (groupings of different versions of a re-

lease) in the Discogs metadata dump resulting in 4 million

tracks, with 58.2% of the tracks belonging to more than

one release. A track may be linked to many releases for

multiple reasons, including remasters, reeditions, or com-

pilations containing it. For each track, we generated lists

of artists and record labels by pooling the metadata on the

2 For example, considering a dataset of one million tracks, a batch size
of 200 pairs, and an average of 6 tracks per release, the probability of
having two pairs from the same release in the batch is 6e − 4, which we
consider an affordable false-negative rate.
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Association Pairs Diversity Time Acc.

track 3.3M 3.3M 63h 88.7

release 846K 2.0M 21h 35.7

artist 1.2M 257K 33h 41.1

label 1.1M 142K 48h 24.7

Table 1. Statistics for the metadata association and

their respective models. We show the number of pairs

used, association diversity (number of different tracks, re-

leases, artists, and record labels, respectively), training

time (hours), and validation accuracy (%).

releases linked to it. We observed that different versions of

a release could contain very different information, so for

us, this was a simple way of maximizing the amount of

information available per track.

We selected the subset with the top-400 most popular

music styles resulting in 3.3 million tracks to train a base-

line model with a multi-label classification objective (Style

tags model). We reserved subsets of 50,000 tracks without

artist overlap and a minimum frequency of 50 releases per

music style tag for testing and validation. These sets were

used as data pools to generate training, validation, and test-

ing sets for the considered metadata associations following

the methodology presented in Section 3. Note that we did

not apply any data cleaning or deduplication, meaning that

there may be room for improving the proposed representa-

tion models. Table 1 contains the resulting number of pairs

and association diversities for each association, as well as

the training time, and the accuracy obtained by their re-

spective models. 3

4.2 Pre-training the embedding models

We used an EfficientNet v1 on its B0 configuration as

a backbone CNN to learn the embedding representa-

tions [37]. Our models operate on 2-second patches of

mel-spectrograms with 96 bands extracted with the same

parametrization as for MusiCNN [38] using the Essentia

library [39]. 4

Due to the massive dataset size, we stored the features

as half-precision (16-bit) floats, and split the data into three

machines with two GeForce RTX 2080 Ti GPUs each to

parallelize the training. Every epoch, we fed the model

with a random 2-second crop of the mel-spectrogram from

each track in the training set. We also used a random patch

per track for validation, but in this case, we used the same

offset on every epoch to get more stable metrics. We relied

on the Adam optimizer with an initial learning rate of 1e−3
and a scheduler that reduced the learning rate by a factor

of 10 if the validation loss had not decreased in 10 epochs.

We trained the models for 100 epochs and considered two

versions. The first one had the weights from the epoch

where the lowest validation loss was achieved. The second

3 The high number of releases is partially due to albums with multiple
reeditions. On average, each track in our dataset is linked to 5 releases.

4 https://essentia.upf.edu/reference/std_

TensorflowInputMusiCNN.html
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Figure 2. Training accuracies over the epochs for the dif-

ferent associations.

model was obtained with stochastic weight averaging [40].

For the last 25 epochs, we imposed a learning rate of 1e−3
and kept a moving average of the weights. As the latter

version only reported minimum improvements in specific

tasks, we decided to present the results of the former only.

As a baseline, we trained a model targeting the top-400

Discogs music styles with the multi-label soft-margin loss

by connecting a fully-connected layer to the flattened out-

put of the last convolutional block with 1280 units (embed-

ding layer). As discussed on the Discogs website, 5 music

styles usually go beyond purely stylistic descriptions and

encode cultural, temporal, or geographical information, so

we hypothesize that the learned representations are valu-

able beyond the task of genre recognition.

For the contrastive objectives, we used a fully-

connected projection head with 512 dimensions on top of

the same embedding layer, followed by a normalization

layer and a tanh activation. We used the bilinear similarity

(aTBp) and the cross-entropy loss as in the original imple-

mentation. While the authors of COLA showed that larger

batch sizes improved the performance, we could only af-

ford a batch size of 200 pairs due to the memory size of our

GPUs. We parallelized the training so that each optimizer

step aggregated six batches computed by different GPUs.

This setup was close to the optimal number of pairs per

optimizer step found in the original publication but used a

larger ratio of positive samples.

To get additional insights into the models, we computed

the top-1 accuracies by taking the arg max of the similarity

matrices. Table 1 shows the training times and validation

accuracies obtained by the model of each metadata asso-

ciation, and Figure 2 shows the evolution of the training

accuracies over the epochs. The accuracies show that the

associations have different difficulty levels, which aligns

with our expectations.

All the pre-trained models are publicly available for fea-

ture extraction within the Essentia library. 6

5 https://blog.discogs.com/en/genres-and-styles
6 https://essentia.upf.edu/models.html
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Dataset Size Classes Type

Genre 55,215 87 Multi-label

Instrument 25,135 40 Multi-label

Mood 18,486 56 Multi-label

Top50 54,380 50 Multi-label

MTAT 25,860 50 Multi-label

FMA 8,000 8 Multi-class

Table 2. Considered downstream datasets.

4.3 Downstream datasets

We evaluated our models as frozen feature extractors

following a transfer learning setup. We consider three

well-known music auto-tagging and classification datasets:

FMA-small [41] (FMA), MagnaTagATune [42] (MTAT),

and the MTG-Jamendo Dataset [43]. The latter contains

different subsets for Genre, Instrument, and mood/theme

(Mood) tags, as well as the top-50 tags in the dataset

(Top50) that we treated independently. For FMA and

MTAT, we used the splits proposed by the authors [41]

and the 12:1:3 partition [44] respectively. In the MTG-

Jamendo tasks, we used the sets defined by its split-0 sim-

ilarly to previous works [17,45]. Table 2 shows the size of

the considered datasets.

4.4 Transfer learning evaluation setup

As for the pre-training stage, we trained the downstream

models with 2-second patches randomly cropped on each

epoch. For validation, we averaged over the activations

from the half-overlapped patches of the entire tracks. We

passed the patches through the frozen backbone and used

the flattened output of the last convolution layer as the in-

put to a multi-layer perceptron with a single hidden layer

of 512 units with a sigmoid or softmax activation for the

multi-label or multi-class tasks. We used the cross-entropy

loss and the Adam optimizer with a starting learning rate

of 1e − 3 and added a weight decay of 1e − 5. A sched-

uler divided the learning rate by half if the loss had not

decreased in five epochs. We trained the models for 30

epochs and used the weights from the epoch achieving the

lowest validation loss to evaluate the test set.

4.5 Stacks of embeddings

Apart from evaluating the embeddings obtained from every

association individually, we were interested in understand-

ing their complementarity. We wanted to understand if the

individually-learned representations could be combined to

boost the performance, and if so, which were the best com-

binations. To investigate this, we ran stacks of embeddings

through the presented evaluation protocol. First, we eval-

uated the stack of the Track, Release, Artist, and Label

features for all the datasets. Additionally, we performed

a systematic evaluation considering all the possible com-

binations of the four contrastive models plus the model

trained on tags on MTAT considering two, three, four, and

five embeddings.

4.6 Multi-task model

We also considered training a multi-task model to learn the

metadata associations jointly. The architecture of the pro-

posed system is depicted in Figure 1 (right). For each as-

sociation, we have a separate pair generator and projection

head. To perform an optimization step, we ran a batch of

pairs from each association through the shared encoder and

its specific projection head and computed a weighted sum

of the losses. The loss weights were empirically selected

prioritizing associations with better single-model perfor-

mances (track: 0.1, release: 0.15, artist: 0.6, and label:

0.15). Additionally, we initialized the encoder with the

weights of the model based on artist associations on its

20th epoch to speed up the training. While we experi-

mented with multi-task models based on two association

types, we did not find additional insights and decided to

omit those results. Due to the additional model size, we

had to reduce the batch size to 50 pairs per association.

4.7 Results and discussion

Table 3 reports the metrics obtained by our models and se-

lected works from the literature. In descending order, the

five groups in the table contain SOTA models trained from

scratch without additional data, SOTA embedding mod-

els, baseline embedding models trained by us, our pro-

posed embedding models trained on metadata associations,

and models combining metadata associations. In the first

group, we include MusiCNN [38], Harmonic CNN [45],

and the winning submission of the 2021 Emotion and

Theme Recognition challenge (team Lileonardo) [46] 7

as the best models from the literature in MTAT, Top50,

and Mood, respectively. Similarly, MuLaP [17] reports

the best performance as a frozen embedding extractor in

Genre, Mood, Top50, and FMA, and the same applies to

CALM [10] in MTAT. Note that comparisons against these

reported metrics may be unreliable due to differences in

training and evaluation settings.

We computed three baselines based on audio em-

beddings from an EfficientNet architecture with random

weights, an EfficientNet architecture trained on music style

tags as described in Section 4.2, and the VGGish model

with its pre-trained weights [47].

Concerning our contrastive models, we observe that

the model based on track associations (Track model)

achieves competitive performance in some tasks, espe-

cially in Top50. Nevertheless, the models using metadata

associations show better or equivalent performance de-

spite seeing fewer pairs of tracks in the pre-training stage.

In particular, we find that model based on artist associa-

tions (Artist model) is the best-performing with a few ex-

ceptions, which aligns with previous studies in metadata-

based music representation learning [13].

Instrument and MTAT are the tasks where our models

are further from the SOTA. For MTAT, we attribute this to

the fact that CALM has 1,000 times more parameters, and

7 https://multimediaeval.github.io/

2021-Emotion-and-Theme-Recognition-in-Music-Task/
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Genre Instrument Mood Top50 MTAT FMA

ROC PR ROC PR ROC PR ROC PR ROC PR Acc.

Lileonardo - - - - 77.5 15.1 - - - - -

Harmoic CNN - - - - - - 83.2 29.8 *91.3 *45.9 -

MusiCNN - - - - - - - - 90.7 38.4 -

MuLaP 85.9 - 76.8 - 76.1 - 82.8 - *89.3 *40.2 61.1

CALM - - - - - - - - 91.5 41.4 -

Random weights 50.7 3.1 49.9 6.4 50.4 3.4 48.3 6.5 50.0 5.3 12.5

Style tags 87.7 19.9 77.6 19.8 75.6 13.6 83.1 29.7 90.2 37.4 59.1

VGGish 86.3 17.2 77.8 20.2 76.3 14.1 83.2 28.2 90.2 37.2 53.0

Track associations 86.3 18.0 69.9 16.7 74.0 12.8 82.9 29.4 89.7 36.4 58.9

Release associations 86.9 18.9 71.9 17.2 72.8 11.7 83.2 29.8 90.3 37.1 60.9

Artist associations 87.7 20.3 69.7 16.9 76.3 14.3 83.6 30.6 90.7 38.0 59.1

Label associations 87.0 19.4 75.0 18.2 74.8 12.8 83.1 29.9 88.7 34.2 59.5

Stack 86.9 19.4 74.7 18.8 74.3 13.0 83.4 30.0 90.8 38.6 59.8

Multi-task 87.2 19.9 70.5 17.2 76.1 14.4 83.5 30.3 90.8 37.8 60.0

Table 3. ROC-AUC, PR-AUC, and accuracy metrics for the downstream datasets. The five horizontal groups represent

SOTA models from the literature trained from scratch, SOTA feature extractors from the literature, baseline feature ex-

tractors trained by ourselves, the proposed feature extractors based on metadata associations, and the proposed feature

extractors combining associations. (*) results were computed in a clean version of MTAT and are not directly comparable.

that the authors report the best metrics from a grid search

over shallow classifiers and hyperparameters. Also, we ob-

served that models operating in the full MTAT previews

tend to report higher PR-AUC performances [8, 10] than

models operating in short chunks [5, 38].

The Stack is obtained by concatenating the embeddings

from the models based on single associations as input for

the MLPs. Except for MTAT, we do not get improvements

over the best single model in any dataset despite the ad-

ditional input dimensionality (5,120). Table 4 shows the

top-5 results of models trained on combinations of embed-

dings for MTAT. The representations from the Artist and

Style tags models are the only ones present in all the top-

5 combinations, suggesting that these are the representa-

tions with the most valuable information. This observation

aligns with the results from Table 3.

Similarly, our Multi-task model is not superior to the

best single model in any dataset, but generally it is close in

performance to the Artist model. We observe that Multi-

task only overcomes Artist in the datasets where other

associations perform better (i.e., Instrument and FMA),

which shows its capability to pick the best information

from different association types.

5. CONCLUSIONS

In this paper, we studied the usage of editorial metadata as

a source of supervision for contrastive feature extraction

models intended for music classification. We contributed

to the previous work on metadata-based feature learning by

scaling up the experiments in terms of dataset size, consid-

ering additional editorial metadata notions, and by exper-

imenting with a new contrastive learning setup. We could

validate that some of the observations from previous stud-

Tr Re Ar La St ROC-AUC PR-AUC

✓ ✓ ✓ ✓ 90.93 38.75

✓ ✓ ✓ ✓ 90.92 38.69

✓ ✓ ✓ ✓ 90.92 38.51

✓ ✓ ✓ 90.89 38.57

✓ ✓ ✓ 90.87 38.57

Table 4. Top-5 combinations of the Track, Release, Artist,

Label and Style Tags features in MTAT. The results are

sorted according to the ROC-AUC values.

ies still hold for models trained on 10 times more data.

Namely, we observed that some metadata-based represen-

tations are superior to their tag-based counterparts and that

artist associations provide the best representations. Addi-

tionally, we found that the features learned from differ-

ent metadata notions can be combined or jointly learned,

showing slight performance improvements for particular

tasks. To the best of our knowledge, this is the first study

using Discogs’ metadata to train music feature models. We

did this by generating pairs of tracks according to metadata

notions with simple matching rules, which leaves room for

experimentation with the dataset.

In future research, we will explore more complex rela-

tionships in the metadata. For example, we could rely on

metadata co-occurrences (e.g., record labels sharing many

artists) to create more detailed associations. Another direc-

tion is to combine our approach with more sophisticated

contrastive learning paradigms, which opens up a possibil-

ity for performance improvements. Finally, we will con-

sider extending the evaluation to additional tasks such as

music recommendation or arousal and valence regression.
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