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ABSTRACT

Melody tracks are worthy of special attention in sym-

bolic music information retrieval (MIR) because they con-

tribute more towards music perception than many other

musical components. However, many existing symbolic

MIR systems neglect the preprocessing of melody track

identification (MTI). Moreover, existing MTI methods of-

ten deal with MIDIs of the same genres and follow specific

track configuration. This limits their generalization and ro-

bustness to unseen data. To address these challenges, we

propose a CNN-Transformer-based MTI model designed

to identify a single melody track for arbitrary MIDI files

robustly. To accommodate longer inputs, We also employ

a sparse Transformer, speeding up attention computation.

Our experiments show that our proposed model outper-

forms state-of-the-art (SOTA) algorithms in accuracy and

benefits downstream MIR tasks.

1. INTRODUCTION

Listeners’ perception of musical works is greatly shaped

by the melodic lines of those works [1]. Human listeners

can usually easily distinguish the melody from other musi-

cal components such as harmonic lines [2]. It is, however,

not as easy for machines. Melody is also a major focus of

many music information retrieval (MIR) tasks. These tasks

fall into three categories: 1) Melody as a target, where the

system seeks to output a suitable melody. Examples of this

task include melody segregation [3, 4] and melody gener-

ation [5, 6]. 2) Melody as a requirement, where the model

takes in an explicitly-identified melodic line as an input.

Such tasks include lyrics generation from music [7, 8] and

singing synthesis [9, 10]. 3) Melody as a dependency,

where the melody is not explicitly provided as input but

still heavily influences the results. Examples include genre

classification [11] and music similarity measurement [12].

However, for melody-as-a-target tasks, the data of an-

notated melody labels can be difficult to obtain. Thus,

an automatic MTI model can create more data for their

training. The melodic line is the decisive factor for these

melody-as-a-dependency tasks [13, 14]. However, current

studies on melody-as-a-dependency tasks often neglect to
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intelligently identify the melodic lines of music. For ex-

ample, a music embedding learning model, PiRhDy [15],

simply regards the track with the highest average pitch

as the melody. Existing genre classifiers treat all tracks

equally rather than give special emphasis to the melodic

line [11]. On the one hand, melody plays fundamental role

in music perception [16]; studies have shown the success

of attention and self-attention mechanisms in sequence

modeling [17, 18]. On this basis, we hypothesize that

melody-as-a-dependency tasks’ performance would likely

improve if the data are available with identified melodic

lines. This preprocessing of MTI would also help melody-

as-a-requirement applications. For instance, some stylistic

music generation systems can only accommodate specifi-

cally formatted melody note sequences as input, demand-

ing musicians’ manual annotation [19]. Equipped with a

MTI module, it could eliminate the dependence on manual

processing.

There are two main challenges in developing a robust

Melody Track Identification (MTI) model for symbolic

music. First, many existing methods either rely on norma-

tive composition theories [20]. They assume that the in-

put MIDIs are highly-formatted (i.e., one channel has only

one track) and usually in limited genres [21, 22]. This as-

sumption limits their generalization and robustness in deal-

ing with more diverse or "dirtier" samples. Second, while

local and global musical features are both significant for

MTI, architectures such as CNNs and RNNs are not ideal

in capturing short-and-long-term features simultaneously.

To address the above challenges, we propose a CNN-

Transformer model to identify one single track as the

melody for a given input MIDI file. This architecture ef-

fectively captures local musical features at the level of a

measure (or a frame) while also making predictions over

the whole piece based on global aggregations of those lo-

cal features. We also utilize sparse attention in the Trans-

former [23] to speed up computation and reduce memory

requirements so longer musical works can be processed.

We conduct the MTI experiment on a manually an-

notated dataset of 11,625 MIDIs. The results show that

the proposed model makes a breakthrough in the accuracy

of MTI. We also evaluate our proposed model as a pre-

processing plug-in in the three types of melody-sensitive

tasks. The results indicate that our proposed model is

easy to incorporate and effectively improves their perfor-

mance. This work includes a dataset with 13,100 widely

used MIDIs whose melody tracks have been labeled. This

dataset will be an asset to other MIR studies in the future.
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2. RELATED WORK

2.1 Melody-Sensitive Tasks

Many studies have been done on MIR tasks which are

heavily influenced by melody. Whether any specific such

task has melody as a target, melody as a requirement,

or melody as a dependency, accurate identification and

knowledge of melody can help solve that task.

2.1.1 Melody as a Target

Tasks which set the melody as a target seek to output

a melody. These tasks include generating melodies, ex-

tracting melodies from existing music, and converting one

melody into another. Most existing systems for these

tasks require annotated melodic lines as labels. For in-

stance, MSNet is an encoder-decoder network designed

for melody extraction from audio [4]. It takes an au-

dio spectrum as input, extracts a salience map via UNet-

like networks, and then estimates the audio’s melodic line.

Another system treating melody as a target developed a

LSTM-GAN model conditioned on lyrics to generate sym-

bolic melody sequences [5].

2.1.2 Melody as a Requirement

Tasks which take melody as a requirement, by definition,

require an explicitly labeled melodic line as an input. The

aforementioned PiRhDy is a model designed for one such

task: it needs an explicitly labeled melodic line so that it

can predict a MIDI file’s melodic notes by the contexts and

thus learning the representation of the music [15]. Sim-

ilarly, Melody2Vec [24] can only utilize MIDIs with la-

beled track names of "melody" or "vocal" as training data.

Another example is AI-Lyrics, a system which automati-

cally generates lyrics to parallel an input musical piece’s

style and syllable alignment [8]. This generator requires

a syllable template which can only be extracted from the

melody track of the input MIDI files. Other lyric gen-

erators and singing synthesis systems also require vocal

melody to be explicitly identified as inputs [7, 9, 10]. Cur-

rently, the melodic lines in MIDI files must be manually

labeled for those files to work with these systems, which

hinders the systems’ practical applications.

2.1.3 Melody as a Dependency

Tasks which use melody as a dependency do not require

MIDIs with explicitly labeled melodic lines, but they are

dependent on melody information nonetheless. For in-

stance, MuSeReNet is a genre classifier for symbolic mu-

sic which extracts latent features of MIDI files with CNNs

and then feeds them into a Multilayer Perceptron (MLP)

to identify their genre [11]. Genre is heavily influenced by

melody, so better knowledge of melody would no doubt

help improve this system’s accuracy. Another example is

MusicBERT, which is a large-scale pre-trained model for

music understanding, resembling the BERT from the field

of Natural Language Processing (NLP) [25, 26]. It pre-

trains the Transformer encoder [18] by solving a pretext

task where it learns a music embedding by reconstructing

notes’ eight music elements such as tempo, pitch, veloc-

ity, and many others. Considering these elements are in-

fluenced by melody, we believe the knowledge of melody

would likely help the learning.

2.2 Melody Identification

Melody extraction and identification problems can also be

subdivided based on the different source and target data

forms. The aforementioned MSNet is designed to extract

melodic lines from acoustic audio, but though it achieves

SOTA performance, it is sensitive to pre-defined settings

such as input frame length and is not robust to inputs

which do not match with those settings. Other models at-

tempt to perform melodic line extraction from symbolic

music [2, 3]. Namely, they output a note sequence repre-

senting the melodic line of an input MIDI. Hsiao et al., for

instance, uses 1D-CNN networks to extract contextual in-

formation and further predict the probability of every pair

of notes belonging to the same track. However, this model

requires a lot of computation and thus have difficulty han-

dling scaled up data size in a short time.

Rather than generating a note sequence as the melodic

line, MTI systems aim to simply label the track which

contains the melody. The Skyline algorithm, for instance,

picks the track with the highest average pitch as the melody

track [27]. There also exist Bayesian approaches which

estimate a track to be a melody track if that track max-

imizes an accumulated probability derived from features

such as note velocity, pitch values, and so on [28]. There

are few deep learning approaches seeking to identify a sin-

gle track of a MIDI file as the melody track. However, the

emergence of self-attention mechanism makes the deep-

learning-based models more powerful to cope with short

term and long term musical structures simultaneously. And

this motivates us to develop our CNN-Transformer model

for this problem.

3. METHOD

In this section, we formulate the MTI problem, then

present the data representation and the architecture design.

3.1 Problem Formulation

First, we define robustness of a MTI model for symbolic

music in four aspects. A robust MTI model should be ca-

pable of identifying the melody tracks from MIDI files that

1) do not follow pre-defined track configurations (i.e., the

first channel contains the melody track, the melody track

is named as "Melody", etc.), 2) have several melodic and

non-melodic tracks within one channel, 3) consist of var-

ious musical parameters (instruments, tempos, velocities

and time signatures), and 4) diverse in genres, styles, and

sentiments.

An arbitrary piece of symbolic music in MIDI format is

denoted as S = {TrN}, where N denotes its number of

tracks, each track tri ∈ Tr is a sequence of MIDI events,

which trigger control demands or music notes. Namely,
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tri = [e0, e1, ..., eM ] where ej ∈ [0, 127]. Given an N-

track MIDI file S , our task is to predict the ID yi of one

single melody track, formally, Y = {yi|S}. Since a MIDI

file has at most 16 sound output channels and one channel

can contain several tracks, our MTI model can be seen as

a supervised 16-way multirun classifier. When the melody

track occupies an entire channel, the initial prediction re-

sult is the melody track ID; When the melody track shares

a channel with tracks of other musical components, the

model reruns a second prediction to further distinguish the

melody track from the initially identified channel. There-

fore, the prediction process is definitively convergent in fi-

nite time.

As shown in Figure 1, the data flow of our proposed

robust MTI model is divided into several modules. First,

an input MIDI file goes through the input module for pre-

processing: it is quantized and serialized as a matrix with

a resolution of sixteenth note (Figure 1-a1). Then the ma-

trix is split into overlapped frames with step-wise scanning

(Figure 1-a2). Second, a frame level CNN extracts the lo-

cal features of a frame (Figure 1-b) and a sparse Trans-

former based classification module predicts the melody

track ID based on the aggregated global features (Figure

1-c). Taking in a MIDI and outputting its melody track

ID, the whole MTI module (Figure 1-I) can serve as a pre-

processing plug-in for other melody-sensitive MIR tasks

(Figure 1-II).

3.2 Input Module

Our input module converts an input MIDI file S into a 2D

matrix M = [mct]C×T , where mct denotes the pitch value

in the cth channel at the tth time step, and T denotes the

total length of the MIDI. One time step corresponds to a

sixteenth-note length so that the encoding is tempo inde-

pendent. If there are multiple tracks containing different

pitch notes in the same channel c at time t, mct is tem-

porarily set to the highest pitch value. The module also en-

sures that all input MIDI files have a full sixteen channels

by padding any files with channels of zeros. This encoding

provides following advantages against the piano roll rep-

resentation: 1) It has a fixed dimension of channels; 2) It

omits the velocity which can confuse the MTI model; 3)

The tracks sharing the same channel can be temporarily

fused into one representative pitch sequence and further

distinguished in the rerun of the model later.

Inspired by Simonetta et al. [2], we apply step-wise

scanning to split the 2D representation of a MIDI file into

overlapping frames of fixed window size, w, equivalent

to one bar. Each resultant frame is thus a w × w matrix

m
(i)
t−l:t+w−l, where m

(i)
t−l:t+w−l represents the frame cen-

ters around the tth time step in the ith MIDI file, and l

represents the preceding l time steps.

3.3 Architecture Design

We propose a CNN + Sparse Transformer structure to learn

local context information of each frame while also aggre-

gating global information over the entire sequence. We

also propose to overcome the memory bottleneck that a

vanilla Transformer imposes. This enables the system to

efficiently process longer music by reducing the density of

self-attention connections. We adopt a hierarchical train-

ing strategy: First, we pretrain the CNN-based feature ex-

tractor by predicting the melody track ID at frame level;

then, we fine-tune the whole model by predicting a single

melody track ID of the input MIDI.

3.3.1 Local Context-Aware Feature Extraction

We use a CNN as our feature extractor to learn the local

context information of given frames provided by the input

module. The architecture for this portion of the system

is shown in Figure 2. The feature extractor ϕ first goes

through pretraining. Specifically, we add a temporary MLP

layer with weights W and bias b to each frame to predict

its fame-level melody track ID. The predicted probability

for a certain frame m
(i)
t−l:t+w−l can be denoted as

ŷ = softmax(Wϕ(m
(i)
t−l:t+w−l) + b) (1)

3
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Figure 2. The architecture of our feature extractor. Short-

cuts represent skipped paths. Dotted shortcut represents

dimension increases. The last fully connected layer (grey)

is only used in pre-training.

3.3.2 Global Classification Module

With the pre-trained feature extractor ϕ mentioned above,

each MIDI file can now be transformed and concatenated

into a context-aware embedding

M
(i) = ||

t∈[1,T ]

ϕ(m
(i)
t−l:t+w−l) (2)

where M
(i) ∈ R

T×d, || denotes concatenation over time

steps, and d denotes the dimension of feature extractor ϕ.
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Figure 3. Left: an example of a sparse self-attention mechanism adapted in symbolic music, where frames 1 and 2 attend to

three neighboring frames (blue), two random frames (orange) and a global frame (green) respectively. Right: an illustration

of each sparse self-attention mechanism proposed by Big Bird, where g = 2, w = 3, r = 2.

We then apply and fine-tune the global feature aggregators

(Sparse Transformer) upon the feature extractor by predict-

ing a single melody track ID based on the aggregation of

the frame-level features. Taking the sequence of the con-

catenated CNN features, the Sparse Transformer computes

a sequence of embeddings with the same length and then

aggregates to one single label, paying attentions to other

positions in its computation. The computation of the multi-

head self-attention is the same as the typical Transformer:

A(xi) = xi + ϕattn(||
h

δ(
Qh(xi)Kh(xi)

T

√
d

)Vh(xi)) (3)

where Qh(·), Kh(·), Vh(·) respectively denote the query,

key and value function of xi, δ(·) denotes the scoring func-

tion, ||
h

· denotes concatenation over attention heads, and

ϕattn denotes the projection applied after concatenation.

Especially, the sparse self-attention reduces the density of

self-attention connections to accommodate longer inputs.

3.3.3 Sparse Self-Attention In Symbolic Music

In a typical Transformer, the full self-attention mechanism

requires a quadratic dependency on sequence length. How-

ever, the length of MIDI files is generally long; directly

applying a full self-attention operation on it can lead to

memory overflow. Rather than simply splitting the embed-

ding M
(i) into shorter segments [29], which can cause a

loss of global information, we leverage Big Bird [23], a

transformer with sparse self-attention mechanism. Specif-

ically, the following sparse self-attention mechanisms are

proposed: 1) Random Attention, all frames attend to r

random frames in the sequence, allowing the global in-

formation aggregator to have better generalization ability.

2) Window Attention, all frames attend to w neighbor-

ing frames in the sequence, functioning as an information

gateway of a music bar. 3) Global Attention, g newly in-

troduced global frames (e.g., a classification token [CLS]

preceding the sequence) attend to all frames in the se-

quence, collecting the global information. By combining

these three sparse attention mechanisms, we manage to ap-

proximate the effectiveness of a full self-attention mean-

while reducing the time and space complexity from O(n2)
to O(n). Figure 3 gives an example of how frames sparsely

attend in symbolic music.

4. EXPERIMENTS AND RESULTS

This section contains the experiment design and the anal-

ysis of the results. First, we detail the construction of the

datasets. Then we compare our proposed model with sev-

eral baselines and alternative architectures so as to evalu-

ate if our proposed MTI model can attain SOTA accuracy.

Finally, we evaluate our model on three melody-sensitive

downstream tasks, including melody segregation, music

embedding learning, and genre classification.

4.1 Dataset

We create four different datasets, one per experiment, to

train and evaluate our models. Each dataset is split into

a training set and a validation set with an 8:2 ratio unless

otherwise noted.

4.1.1 For MTI Model

We collect MIDI songs from three widely used MIDI

datasets: LMD [30], Reddit MIDI dataset 1 , and Free-

MIDI 2 . We then eliminate samples with no obvious

melody track, such as MIDIs of percussion instruments

and chord progression patterns, and we also eliminate

MIDI files where the melody changes tracks. Next, we

manually annotate the melody track of the remaining songs

and shuffle their melody track IDs for label distribution

balance. The resultant dataset contains 11,625 samples for

model training and validation (D-MTI). Additionally, the

trained MTI model automatically annotates another 1,475

files in the Free-MIDI dataset, providing an overall dataset

of 13,100 MIDI files (D-Full) 3 after manual checking.

The proposed datasets are desirable for training and evalu-

ating a robust MTI model because the data covers a variety

of genres (17 in total), track configurations (track orders

and names), as well as MIDIs with multi-track channels.

4.1.2 For Downstream Task Evaluations

To evaluate our MTI model’s utility for downstream MIR

tasks, we build three more datasets based on Free-MIDI: a

dataset of 1,100 randomly selected MIDIs, including audio

1 https://www.reddit.com/r/datasets/
2 https://github.com/josephding23/Free-Midi-Library
3 https://github.com/maxichu/MelodyTrackIdentification
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renderings of the MIDIs and of their automatically iden-

tified melody tracks (denoted as D-Audio), a dataset of

5,000 genre-labeled MIDI files of 17 genres (D-Genre),

and a dataset of 500 MIDI files of pop songs (D-POP).

4.2 Melody Track Identification

To evaluate the effectiveness, efficiency and robustness of

our proposed MTI model, we select the following three

baseline models: the Skyline algorithm, a Bayesian prob-

ability model with dynamic programming [28], and a 1D-

CNN model with clustering [3]. The CNN-based melody

segregation model [2] is not selected for comparison be-

cause it seeks to directly extract the melodic line rather

than predict the melody track. We also selected three al-

ternative architectures: a BiLSTM architecture, a CNN +

MLP architecture and a CRNN architecture. We then com-

pare our proposed CNN + Sparse Transformer (CNN-ST)

architecture with all the above models.

Model Accuracy(%) Running Time(s)

Skyline 14.7 252.52
Bayesian 40.98 1094.15
1D-CNN 5.51 14818.89

BiLSTM 10.23 12.37
CNN-MLP 83.65 36.12

CRNN 81.60 32.74
CNN-ST 84.40 29.71

Table 1. Accuracy and efficiency of MTI models. The run-

ning time is the total time of infering 1,000 samples. (The

frame-level accuracy of the basic CNN model is 49.72%)

As shown in Table 1, our proposed model achieves

SOTA results without incurring extra computational costs.

Both Skyline and the 1D-CNN model suffer sharp reduc-

tions in accuracy when dealing with samples which are

not highly normative or formative. We believe that Sky-

line’s dependency on music composition convention hin-

ders its generalization, while the clustering phase of 1D-

CNN model might be the bottleneck of the capability to

accommodate complicated data sources. The Bayesian ap-

proaches obtains a lower accuracy of 40.98% on the pro-

posed dataset than the reported 89% accuracy on a standard

MIDI dataset. Its definitions of scoring algorithms target-

ing at only classical music could account for the accuracy

drop. These issues can cause their respective algorithms to

have low accuracy when processing long music with many

different arrangements and genres. Worse still, the high

time complexity of the 1D-CNN model can make it too

costly to be incorporated into other models or applications.

As shown in Table 1, the comparison between BiLSTM

and our proposed CNN-ST shows the CNN’s effectiveness

in capturing local musical features. The accuracy improve-

ment over frame-level CNN indicates the ability of ag-

gregating global information from frames of the proposed

self-attention module. In the case study, our model han-

dle the following occasions better than the baselines: 1)

There are other components having a higher average pitch

than the melody; 2) The music notes are dense and in large

quantity; 3) There are tracks echoing the high-pitch part of

the melody. Therefore, our proposed model leads in accu-

racy, efficiency, and robustness for the MTI task.

4.3 Downstream Tasks

We test our MTI model in three downstream tasks of dif-

ferent types to evaluate its benefits to the MIR community:

1) Improving melody segregation of audio music by pro-

viding more easily-obtained training samples; 2) Improv-

ing musical embedding learning by allowing more rigorous

assumptions on melody; 3) Improving genre classification

by emphasizing the impacts of the melody.

4.3.1 Melody Segregation

As a typical melody-as-a-target task, melody segregation

requires pairs of {audio music, melody} for training. How-

ever, such data is laborious to obtain±labeling large num-

bers of melodic lines requires a significant amount of

time and effort from trained music specialists. Training

with small datasets may lead to underfitting issues, such

as a recent melody segregation work whose dataset only

contained 108 samples [4]. Furthermore, existing paired

datasets are often collected from just a few genres, or even

one genre, of music. Models trained by those datasets thus

often fail to generalize to music from other genres.

This experiment aims to test whether our MTI model

can contribute to the melody segregation task by both au-

tomatically labeling the melody tracks of MIDI files in or-

der to rapidly expand the amount of audio, including au-

dio from various genres, formats and compositional rules,

which can be used to train these systems.

ID Pretrain Data Train Data OA (%)

1 / MedleyDB 37.7
2 / D-Audio-1K 39.91

3 /
MedleyDB ∪

D-Audio-1K
41.1

4 D-Audio-1K MedleyDB 40.23

Table 2. Accuracy of different training data settings for

the melody segregation task. All results are computed on

an independent 100-sample validation subset of D-Audio.

OA is short for overall accuracy.

We trained four melody segregation models with the

same architecture [4] but different datasets. Our control

model was trained with the 108 samples of the original

MedleyDB [31]. Our three other models were trained with

D-Audio-1K (1,000 samples in D-Audio), a combined

dataset of MedleyDB and D-Audio-1K, and D-Audio-1K

(pretraining) followed by MedleyDB (fine-tuning), respec-

tively. Validation was done with the set of the remaining

100 samples from D-Audio, denoted as D-Audio-100.

As shown in Table 2, not only does an increased amount

of training data improve melody segregation accuracy but

pretraining with the D-Audio-1K dataset provides superior

results to using either of those datasets on their own. The
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pretraining, however, does worse than the setting where all

the data is used for training. This can be attributed to the

bias of data distribution between the two datasets.

4.3.2 Music Embedding Learning

Music embedding learning is a melody-as-a-requirement

task. Many music embedding learning models are trained

by predicting the melody notes according to other music

components. However, these models generally rely on

the Skyline algorithm or track names for data preparation,

which can result in errors if they do not find the melody

correctly [15, 24].

We conduct an experiment with the PiRhDy embedding

model [15] to evaluate how well our proposed MTI can

improve music embedding learning models. We run all of

PiRhDy’s three subtasks for performing music embedding

(token modeling, next context modeling, and accompani-

ment context modeling) on both the D-POP and D-Gen

datasets. Before executing those subtasks, we run the Sky-

line and the proposed CNN-ST+ model to identify melodic

lines for the tracks being analyzed.

As shown in Table 3, all three subtasks achieve higher

accuracy when using melody tracks identified by our pro-

posed model as compared to Skyline. The best improve-

ment occurs in the subtask of token modeling on the D-Gen

dataset, which indicates that our system better handles un-

usual genres than the existing Skyline algorithm too.

/
Skyline+
D-POP(%)

CNN-ST+
D-POP(%)

Skyline+
D-Gen(%)

CNN-ST+
D-Gen(%)

Token
Modeling

60.49 74.61 74.77 96.74

Context
Modeling-

Next
91.43 92.05 91.89 94.58

Context
Modeling-

Acc
67.45 78.74 55.37 56.53

Table 3. Accuracy of models using different methods for

PiRhDy embedding learning.

MTI

Model

MIDI file

REMI

Tokenizer

Melody

Tokens

MIDI

Tokens

Melody 

Track 

CNN

CNN

Features

CNN

Features

Add&Norm  

(CNN Features,  

Melody Tokens)

(a)

(b)

(c)

MLP

CNN

Features

Melody

Tokens

Figure 4. The three compared architectures for music

genre classification with different inputs of the MLP layer.

The inputs of the MLP are: (a) only the CNN features; (b)

concatenation of CNN features and the melody tokens; (c)

CNN features Add-Norm with the melody tokens.

4.3.3 Genre Classification

As a melody-as-a-dependency task, genre classification

can be enhanced by explicitly emphasizing the melody

over other musical components. This experiment is con-

ducted on D-Gen. As shown in Figure 4, the full-track

MIDIs and the identified melody track are first both to-

kenized into REMI [32] sequences with MidiTok toolkit

[33]. Next, genre prediction is attempted with three differ-

ent architectures. All of the architectures are CNN + MLP,

and their input layers are just CNN features, CNN features

appended with tokenized melody note sequences, and the

CNN features Add-Norm with the tokenized melody note

sequence respectively.

The results in Table 4.3.3 show that the accuracy in-

creases when feeding the MLP layer with extra informa-

tion about the melody. Therefore, highlighting the melody

by either appending or blending it with the CNN features

makes the music genre more distinguishable.

Inputs to MLP Accuracy(%)

CNN features 41.51
CNN features || Melody Tokens 42.75

Add&Norm
(CNN features, Melody Tokens)

45.76

Table 4. Accuracy of models with different inputs to MLP

layers for genre classification.

5. FUTURE WORK

We notice that emphasizing the melody track could dilute

models for certain tasks where melody is not decisive, or

at least is not the only decisive factor. For instance, we

trained systems for key recognition [34,35] with full MIDI

files, just the melody tracks of MIDI files, and just the

non-melody tracks of MIDI files. Whether using a rule-

based algorithm [34] or a deep learning-based model [35],

the systems trained with full MIDI files outperformed the

others, and the systems trained with non-melody tracks

outperformed those trained with just melody tracks. We

thus estimate that accompaniments may matter more than

melody for this task and are looking into ways to tweak our

algorithm to account for this.

Also, the samples in our collected dataset contain only

one melody track, and so for simplicity, we neglect sce-

narios such as multi-track melodies and melodies which

switch tracks. In the future, we will develop a stronger

model which can account for these scenarios even though

they make the global musical structure of the song more

challenging, and will also create datasets with more de-

tailed annotations that can account for the position of the

melody on a frame-by-frame basis.

6. CONCLUSION

Melody track identification is the first step towards music

understanding and benefits melody-sensitive MIR tasks.

This paper addresses the challenges of identifying the

melody track accurately, efficiently, and robustly for any

input MIDI. Our experiments show that our proposed

model achieves SOTA performance and increases accuracy

for many downstream tasks. We are optimistic that further

research in this direction will not just enhance the ability of

computers to identify melody tracks but will also improve

many other aspects of MIR.
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