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ABSTRACT

Labeling and maintaining a commercial sound effects li-

brary is a time-consuming task exacerbated by databases

that continually grow in size and undergo taxonomy up-

dates. Moreover, sound search and taxonomy creation are

complicated by non-uniform metadata, an unrelenting prob-

lem even with the introduction of a new industry standard,

the Universal Category System. To address these problems

and overcome dataset-dependent limitations that inhibit the

successful training of deep learning models, we pursue rep-

resentation learning to train generalized embeddings that

can be used for a wide variety of sound effects libraries and

are a taxonomy-agnostic representation of sound. We show

that a task-specific but dataset-independent representation

can successfully address data issues such as class imbal-

ance, inconsistent class labels, and insufficient dataset size,

outperforming established representations such as OpenL3.

Detailed experimental results show the impact of metric

learning approaches and different cross-dataset training

methods on representational effectiveness.

1. INTRODUCTION

Sound effects libraries are collections of prerecorded au-

dio assets curated and meant for use by sound designers

and editors. In application, a user will search for sounds

necessary for their project by querying the library with

a computer or other commercial tools for sound search,

which helps organize sounds or allow for varying modes of

querying the database [1±4]. Examples of typical classes

include ambience, foley, and sci-fi. Libraries are often used

in game audio and audio post-production applications be-

cause access to raw audio assets facilitates efficiency in

the creative process, accommodates lacking resources for

recording equipment, and alleviates barriers to inconvenient

recording locations necessary for particular sounds.

We identify two main problems with sound effects li-

braries in our work. First, interviews with dataset providers

for this research revealed that too much time is spent la-

beling, re-labeling, and performing quality assurance on
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databases that continually grow in size and undergo tax-

onomy updates. One potential solution to this could be

the application of machine learning and, more specifically,

deep learning for automating sound classification. However,

such machine learning models face several particular task-

related challenges, such as (i) the size of available datasets

can dramatically vary in terms of audio data and number

of classes, (ii) data class distributions are often highly im-

balanced, (iii) data labels are sometimes of poor quality or

inconsistent, and (iv) training dedicated models on every

existing sound effects library can be time-consuming.

Second, non-uniform metadata in sound effects libraries

complicate the successful sound search for a user and the

creation of a useful taxonomy for a vendor. The recent intro-

duction of the Universal Category System (UCS) 1 attempts

to address this problem. UCS is an industry-proposed solu-

tion to standardize taxonomies designed by and for sound

designers and editors. It is designed to be complete and

sufficient for sound effects library categorization. However,

adopting this standard has been slow; while several sound

effects libraries have already converted to this new indus-

try standard, others continue using their own proprietary

taxonomies for convenience or preference.

We address problems that arise when using a machine

learning approach, training generalized embeddings that

can represent any sound effects library and work on any

taxonomy for sound classification. To build a powerful

learned representation, we investigate two main methods

for representation learning with a (i) metric-learning and

(ii) cross-dataset training approach.

Our work has the following main contributions:

• the introduction of a powerful new representation

for use in sound effects libraries trained on relevant,

commercially available data,

• the investigation of UCS’ generalizability (the indus-

try’s first approach to unifying metadata), and

• the presentation of extensive results emphasizing the

positive impact of cross-dataset training, an under-

researched aspect of representation learning.

The remainder is structured as follows. In Sect. 6.2,

we analyze if metric learning models will learn a better-

structured embedding space and produce higher classifica-

tion results than a Cross-Entropy (CE) model. In Sect. 6.3,

we see if a cross-dataset training scenario will outperform

1 universalcategorysystem.com, last accessed May 10, 2022.
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all other training scenarios and discuss novel UCS-specific

findings. In Sect. 6.4, we evaluate the impact of 3 different

cross-dataset training methods. See Sect. 5.3.1 for data mix-

ing methods, which explores accommodating for encoder

bias with data training order, Sect. 5.3.2, which investi-

gates accommodating for various dataset characteristics by

‘Focal’ dataset regularization, and Sect. 5.3.3, which exper-

iments with using dataset-independent BatchNorm layers.

We compare our best representations against OpenL3 State-

of-The-Art (SoTA) deep audio embeddings in Sect. 6.5.

2. RELATED WORK

We present an in-depth literature review regarding sound

effects libraries and two aspects of representation learning.

2.1 Sound Effects Libraries

While there is a plethora of work on sound event classifi-

cation, there is little work that conducts extensive research

for a sound effects library application. Peeters and Reiss

conducted sound effects classification by focusing on the

discrimination between two classes, ambience and sound

effects; audio features were manually selected [5]. Audio

tagging work has been done on Freesound [6], the BBC

sound effects library [7], and other online collaborative

sound collections [8, 9]. Some have designed features and

taxonomies to improve sound classification. Moffat et al.

tried to address the issue of a non-unified metadata label-

ing scheme with the Adobe Sound Effects Library. 2 They

created a hierarchical taxonomy for sound effects based on

the unsupervised learning of sonic attributes, using decision

trees to assess audio and label semantic similarity [10]. Oth-

ers that do not target a specific sound effects library applica-

tion have experimented with psychoacoustic approaches to

feature design using actions, material, and mood [3, 11±14].

Meanwhile, the rest of the work regarding sound effects

libraries does not focus on classification but explores sound

search, query, and retrieval. Pearce et al. investigated user

search queries on Freesound [15], reducing these descrip-

tors into timbral features to aid sound search [16]. Lafay et

al. and Zhang et al. researched methods to effectively query

databases without keywords or by vocal imitation [2, 4].

Yang et al. recently presented a new system for indexing

sound effects libraries, evaluating their work on users [1].

2.2 Representation Learning

Representation learning aims to learn a highly discrimina-

tive embedding space that can generalize to various down-

stream tasks. Two examples of powerful deep audio em-

beddings are VGGish and OpenL3 [17±19], which have

proven to be useful for many music information retrieval

(MIR) and cross-modal tasks, e.g., classification, tagging,

few-shot learning, and continual learning [20±23].

2.2.1 Metric Learning

A popular method for representation learning is metric learn-

ing, where methods include the Contrastive, Triplet, and Cir-

2 goo.gl/TzQgsB, last accessed May 10, 2022.

cle loss. Contrastive loss minimizes the distance between

similar classes’ feature vectors and maximizes the similarity

between different classes’ feature vectors, training on pairs

of positive or negative input samples [24±26]. Triplet loss

optimizes both positive and negative inputs simultaneously

and adds an additional anchor input in its loss computa-

tion [27±29]. Circle loss tries to improve upon the Triplet

loss, featuring more flexible optimization, more definite

convergence, and tries to unify the goals of a metric learn-

ing and classification loss into one [30]. Although metric

learning losses can be used in a self-supervised [25, 31±34]

or un-supervised [24] manner, it is common to combine a

metric learning loss with a classification loss to better fit a

supervised learning problem. Khosla et al. have explored

training methods to regularize and better structure the em-

bedding space, introducing a Two-Step and Joint-Training

method [26]. Furthermore, other works have explored the

adoption of a contrastive approach to regression [35].

2.2.2 Cross-Dataset Training

Furthermore, training on large amounts of diverse data is

a crucial aspect of representation learning [17±19]. This

can be addressed with cross-dataset training; we note many

similarities between cross-dataset training and multi-task

learning. Though there are scattered works amongst various

fields in the deep learning literature that combine multi-

ple different datasets for training, only a few papers have

explored proposing methodologies for this. Namely, most

work has only been explored in the computer vision domain;

there is little work in audio. Working on symbolic music

generation, Dong et al. found that stratified sampling mix-

ing alleviated the source imbalance problems that come with

combining datasets of various sizes; this worked better than

simply concatenating datasets for training [36]. Ranftl et

al. explored a multi-task learning setup with Pareto-optimal

mixing and a multi-objective loss, evaluating success in a

zero-shot scenario for a monocular depth estimation task.

Their multi-task learning setup and mixing strategy, which

ensures that decreasing the loss on one dataset necessitates

increasing the loss on another, produced results superior to

a naive mixing strategy where they trained on minibatches

of equally sampled datasets. They found that this method

was better at leveraging the act of adding more datasets

for training [37]. Wan et al. introduced a MultiReader

method for a speaker verification task to support training

with datasets of different keywords and languages. They

regularized the datasets to address insufficient and imbal-

anced dataset sizes but only experimented with two het-

erogeneous data sources. Moreover, they do not explicitly

illustrate a method of reweighing datasets, resorting to hy-

perparameter tuning [38]. Lastly, Wang et al. introduced

a Dataset-Aware Block, which uses dataset-invariant con-

volutional layers and dataset-specific BatchNorm layers.

They concluded that preserving heterogenous dataset char-

acteristics improves performance [39]. To the best of our

knowledge, cross-dataset training has not been explored

extensively in audio-related tasks.
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Figure 1. Network architecture: CNN9-max encoder, MLP

classifier head, and loss functions.

3. METHOD

Our best pre-trained model is freely available online. 3

3.1 Model Architecture

Our encoder architecture adapts the Convolutional Neu-

ral Network CNN9-max architecture from a DCASE 2019

baseline system for multi-class classification and is dis-

played in Fig. 1 [40]. We pre-train the encoder with one

Multi-Layer Perceptron (MLP) classifier head per dataset.

After training, we freeze the encoder and pass the represen-

tations to a simple Nearest Neighbor classifier to train and

test the learned embedding space. Models were trained with

Python, PyTorch, and the PyTorch metric learning library. 4

3.2 Input Representation

All audio files were re-sampled to 44.1 kHz, down-mixed,

and normalized. Mel-spectrograms were computed with a

block size of 46 ms, hop size of 23 ms, 96 Mel-Bins, and

span the audible frequency range [41]. We used min-max

normalization for spectrograms and z-score standardization

for extracted embeddings. Spectrogram input dimensions

to the network are (100, 96) and span approximately 2 s of

audio. This length was determined in pilot experiments.

3.3 Training Procedure

We trained all models with a batch size of 64, the Adam

optimizer, and early stopping. Model checkpoints used for

inference correspond to the best validation loss. For cross-

dataset training, we save the best average validation loss

from all datasets. Hyper-parameters for pre-training were

found via 20 trials of random search. During pre-training,

2 s frames of audio files are randomly sampled whenever a

batch is retrieved. We re-shuffle the dataset per epoch. We

compute embeddings with 50% overlap at inference time.

3.4 Evaluation Metrics

The macro F-1 score over classes in a dataset is our pre-

dominant metric for evaluating classification performance,

as all datasets have imbalanced class distributions. We also

monitor the Davies-Bouldin Index (DBI) to evaluate the

quality of the embedding space structure, i.e., clustering.

3 github.com/alisonbma/aiSFX, last accessed August 11, 2022.
4 kevinmusgrave.github.io/pytorch-metric-learning, last accessed May

10, 2022.
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Figure 2. Imbalanced UCS & Non-UCS dataset statistics,

(i) Number of audio-files per training dataset, (ii) Number

of classes per taxonomy, (iii) Class distribution sorted from

most to least classes among training datasets.

The DBI measures the average similarity between a cluster

and its most similar cluster.

4. DATASETS & TAXONOMIES

We address our goal of training generalized embeddings

by training and testing with 9 datasets and 7 taxonomies.

We emphasize that we use a diverse assortment of datasets

for this research and present corresponding data statistics

in Fig. 2. We use 3 UCS-compliant datasets: Pro Sound

Effects (PSE), Soundly (SDLY), UCS Mixed (UMIX), and

6 Non-UCS datasets from the Sound Ideas library: Cartoon

Express (CART), HPX Digital (HPX), Production Elements

(PROD), Series 6000 (S6), Series 9000 (S9), Soundstorm

(STRM). For UCS-compliant datasets, we use UCSv8.1

Category labels as ground truth.

Preliminary experiments with UCS lead us to use exper-

imental subsets of 150 or fewer datapoints per class. We

pre-train and evaluate embeddings on the full imbalanced

subsets (65k audio files) except in Cross-Dataset training

scenarios, where we use class-balanced versions for Non-

UCS data. A stratified train validation test split of 8:1:1

was conducted. For UCS-compliant datasets, the fine CatID

labels determined stratification.

We select PSE as the base dataset for UCS-Transfer

experiments because of its larger number of datapoints

and classes, cleaner labels compared to Non-UCS datasets,

better generalization when evaluated against other UCS

datasets, and more even distribution among both levels of

the UCS 2-level class hierarchy.

5. EXPERIMENTAL SETUP

We list our research questions and hypotheses below using

the following experimental variables:

• Metric learning loss functions (Fig. 1, Sect. 5.1),

• Variable training scenarios (Sect. 5.2), and

• Cross-dataset training methods (Sect. 5.3).

5.1 RQ1: Impact of Metric Learning

We first ask whether metric learning loss functions that

learn distances instead of absolute class labels will improve

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

868



classification results. We hypothesize that metric learning

approaches will learn a more discriminative embedding

space compared to CE models and that this better-structured

embedding space will improve classification results.

5.1.1 Training Parameterization

We train all metric learning models with Khosla’s Joint-

Training scheme that optimizes a hybrid sum of a metric

learning loss function and Cross-Entropy loss as it has been

shown to be more effective than a Two-Step training method

[26, 33, 35, 42, 43]. Fig. 1 illustrates our experiments with

the joint metric learning losses (i) Contrastive, (ii) Triplet,

and (iii) Circle.

The metric learning losses optimize cosine similarity.

Positive and negative samples are computed from all pos-

sible pairs or triplets between samples in a batch. Accord-

ingly, we find that our batch size is sufficient for training

from initial experiments. Model training utilized online

mining and the regularface embedding regularizer [44].

In addition to re-shuffling the dataset per epoch and

randomly selecting 2 s frames, we re-sample the dataset

so that it randomly selects new datapoints per class per

epoch. Here, we equally sample 4 datapoints per class so

that a single batch includes 16 different classes; we found

minimal difference from weighted sampling.

5.2 RQ2: Impact of Cross-Dataset Training

Secondly, we ask whether cross-dataset training will im-

prove our best Cross-Entropy and metric learning results in

all training scenarios. We hypothesize that a Cross-Dataset

training scenario will outperform all others, including UCS-

Transfer (see definition below), improving upon both UCS

& Non-UCS dataset results. Our rationale is that representa-

tions generated from Cross-Dataset models will have seen a

more significant quantity and variety of data from different

sound taxonomies, producing more generalized represen-

tations. Moreover, we hypothesize that UCS-Transfer will

yield decent classification results as UCS is a standardized

taxonomy for sound effects libraries. We denote Cross-

Dataset models with the prefix, X.

5.2.1 Training Scenario Definitions

We conduct experiments with 3 training scenarios:

(i) Within-Dataset training: Pre-train and evaluate the en-

coder on the same dataset, (ii) UCS-Transfer: Pre-train

the encoder on a UCS-compliant dataset and evaluate on

other datasets in a transfer learning scenario, and (iii) Cross-

Dataset training: Pre-train the encoder on all datasets and

taxonomies, evaluate the encoder on any dataset.

5.3 RQ3: Impact of Cross-Dataset Training Methods

Datasets used for training may have varying characteristics.

For example, they may use taxonomies of dissimilar scopes

and biases and have different dataset sizes, all of which

an effective classifier must adapt to. Our final question is

whether training scenarios accommodating dataset charac-

teristics will improve classification results. We experiment

with 3 methods as introduced in the following subsections,

(i) Data mixing (X-Sequential, X-Joint), (ii) ‘Focal’ dataset

regularization (FDR), and (iii) Dataset-independent Batch-

Norm layers (BN).

5.3.1 Data Mixing

We use two variations of data mixing. Sequential trains on

all datapoints from a single dataset before training on the

next, i.e., concatenate datasets, while Joint trains on data-

points from all datasets in mixed order, similar to stratified

sampling in the literature [36]. We limit mixing for Joint so

that all datapoints in a batch must correspond to the same

dataset. We affirm that backpropagation is called per batch.

5.3.2 ‘Focal’ Dataset Regularization

We regularize the datasets by ‘difficulty’ and reweigh them

by a dataset’s training convergence speed in epochs. In-

spired by Focal Loss [38, 45, 46] and mining for hard pairs

or triplets in metric learning [29, 47±49], easier datasets are

down-weighted so that training focuses on difficult datasets.

αd =
1− βne

1− β
(1)

We modify the reweighting function shown in Eqn. 1 to

re-balance the datasets and initialize these weights with ne,

the epoch at which a dataset’s training set macro F-1 score

crosses a threshold of 90% [50]. These weights may be

adjusted with hyperparameter β to reduce or heighten the

difference between dataset weights. ad is the unnormalized

reweighing factor per dataset, d. As previously done in the

literature, we normalize αd so that
∑

D

d=1
αd = D, keeping

the loss in roughly the same range. D represents the total

number of datasets used for pre-training [45, 50].

5.3.3 Dataset-Independent BatchNorm Layers

Similar to selecting the correct classifier head per dataset

when pre-training the encoder, we select a dataset’s corre-

sponding BatchNorm layers. This is equivalent to turning

each ConvBlock in Fig. 1 into a Dataset-Aware Block [39].

5.4 RQ4: Comparison to SoTA

We select OpenL3 features as our reference to SoTA deep

audio embeddings because L3-Net is said to ªconsistently

outperform VGGish and SoundNet on environmental sound

classificationº [18]. We use the default OpenL3 parameters

as they yield the highest frame-level classification results

and select the Music content type embeddings for com-

parison (6144 dimensionality, 0.1 s hop size, and 256 Mel

Bins) [18]. We aggregate these features to represent 2 s of

an audio file for consistency with our input representation.

6. RESULTS

All results are computed at the frame-level, i.e., aggregated

over each 2 s frame extracted from audio files in the hold-

out test set. Boxplot datapoints indicate results for a single

dataset. Metric learning plots, Fig. 4 and 5, only show X-

Sequential results for the Cross-Dataset training scenario.
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Figure 3. Baseline macro F-1 score classification results

using Cross-Entropy loss, CE (Within-Dataset).

6.1 Baseline Results

Fig. 3 displays baseline classification results where each

model is trained and tested on only one dataset, itself. Plots

for the following experiments only show the change from

this baseline plot.

6.2 RQ1: Impact of Metric Learning

Fig. 4 shows how metric learning models improve upon the

baseline’s embedding space structure to different degrees.

A lower DBI indicates a better embedding space structure.

Contrastive improves the space for most datasets in all train-

ing scenarios. Triplet results in a slightly higher average

DBI in all but the UCS-Transfer training scenario. Circle

performs significantly better in a Within-Dataset training

scenario with an average DBI decrease of 0.43. However,

it performs surprisingly poorly in UCS-Transfer & Cross-

Dataset, suggesting that it is not ideal for generalization, a

prime motivator of representation learning.

Contrary to our hypothesis, a better-structured embed-

ding space (lower DBI) does not always improve classifica-

tion results (higher macro F-1), shown in Fig. 5. We only

see that metric learning models improve classification re-

sults in the UCS-Transfer training scenario. We specifically

note that Circle significantly improves the embedding space

structure compared to Contrastive in Within-Dataset. How-

ever, both embedding spaces still yield similar classification

performance, an average of -1.75% and -1.50% from CE,

respectively. We note other work by Lee et al. regarding the

similarities between metric learning and classification [51].

Focusing on classification results, we identify Triplet
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Figure 4. DBI change of metric learning models relative to

CE in different training scenarios.

as our ‘best’ metric learning loss with a slightly higher

average performance than Contrastive. Triplet performs

on par with CE in Within-Dataset and Cross-Dataset (less

than 1% difference on average), and has an average of

4.25% improvement from CE in UCS-Transfer. Therefore,

Contrastive and Circle loss results will be omitted in the

following sections.

6.3 RQ2: Impact of Cross-Dataset Training

Results for cross-dataset training are shown in Fig. 6.

Matching our hypothesis, we find that for CE models, Cross-

Dataset outperforms Within-Dataset models for the major-

ity of datasets by approximately 4-5%. We find that Triplet

models also tend to improve by 1-3% except for X-Joint-BN

+ Triplet. This confirms that cross-dataset training indeed

leads to better generalization across all sound taxonomies.

6.3.1 UCS Insights

We preface this section with preliminary results on UCS.

We find that the UCS-compliant datasets in this study use

the standardized UCS taxonomy in a non-uniform way.

Without fine-tuning another classifier head, one cannot use

a UCS taxonomy-trained model on other UCS-compliant

datasets. This corroborates the need for generalized repre-

sentations that can adapt to any taxonomy of sound.

With this said, Fig. 6 also shows that UCS-Transfer can

achieve results considerably better than random. Although

it under-performs Within-Dataset training by an average of

7.48% with CE models, we find that there is only an average

of -1.62% difference from CE with Triplet models. Along-

side, we also verify that other UCS-compliant libraries,

SDLY and UMIX, can be used as base sets to achieve decent

generalization in a transfer learning scenario.

We note some dataset-specific details for UCS-Transfer

+ Triplet compared to our best Cross-Dataset Triplet

model, X-Joint + Triplet. Both perform similarly (around

1% worse) on Non-UCS CART, HPX, PROD, and STRM

datasets. UCS-Transfer performs around 5-6% worse on

UCS-compliant SDLY and UMIX, a substantial improve-

ment from previous results that did not re-train a classifier

head. Lastly, it performs around 7% worse on Non-UCS

S6, likely because S6 exhibits the highest number of classes

amongst all datasets while PSE only has 78 classes.
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Figure 5. Macro F-1 score improvement of metric learning
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Figure 6. Macro F-1 score improvement of various training

scenarios from Within-Dataset.

6.4 RQ3: Impact of Cross-Dataset Training Methods

We experiment to see if accommodating different dataset

characteristics with 3 cross-dataset training methods will

further improve results. We compare all cross-dataset train-

ing methods to X-Sequential in our discussion.

First, sensitivity to encoder bias and training order does

not severely impact results for our task. Data mixing results

note an average 1% difference between X-Sequential and

X-Joint in CE and Triplet.

Second, reweighing datasets as proposed in Sect. 5.3.2

does not lead to observable consistent trends. We show

results that use β = 0.999. Looking at difficult datasets,

the performance of SDLY worsens by 2.96%, while STRM

improves by 3.27% despite having similar convergence

speeds and being the second-ranked most ‘difficult’ datasets.

We also observe an unfortunate worsening of results for

faster-converging datasets, i.e., HPX decreases by 1.77%

(Triplet), S9 decreases by 2.32% (CE) and 6.20% (Triplet).

Third, we verify that independent BatchNorm layers do

preserve dataset-specific characteristics. Unlike other work

in the literature [39], we find that this may not always be

beneficial as it may exacerbate dataset-specific problems.

Shown in Fig. 6, we specifically note decreases in perfor-

mance for Non-UCS HPX, PROD, S6, and S9, which we

attribute to messier inconsistent labels and insufficient train-

ing data, apparent in Fig. 2. This decrease can be quite dra-

matic with S9 dropping by 7.53% (CE) and 24.4% (Triplet).

Alongside, we find that UCS-compliant PSE and SDLY,

as well as Non-UCS STRM experience a 2-3% increase in

performance, which we attribute to both the cleaner UCS

taxonomy and datasets having sufficient training data.

6.5 RQ4: Comparison to SoTA

Overall, our work reveals that our best model is X-

Sequential + CE. We compare X-Sequential + CE and

OpenL3 in Fig. 7 and provide a commonly used benchmark

dataset, ESC-50 [52], to extend the assessment of our work

in a non-task-specific audio application. Unlike the rest of

our datasets, we show the 5-fold cross-validation results for

ESC-50 as commonly reported in the literature. Ultimately,

we observe that our best model outperforms OpenL3 on all

datasets. In addition, we note that our model requires fewer

resources to achieve its results. While both models have

UCS
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Figure 7. Our best model compared to OpenL3 audio

embeddings. Blue bars illustrate the amount in which we

outperform OpenL3.

a similar number of parameters (4.7M), our best model is

trained on approximately 7x less data (39k audio-files vs.

296k videos) [18].

7. CONCLUSION

We introduce a new pre-trained representation for auto-

matic sound effects library classification. Our task-specific

representation outperforms OpenL3 on both UCS & Non-

UCS taxonomies across diverse datasets. Moreover, we

show the effectiveness of cross-dataset training with Cross-

Entropy loss over metric learning for this task. Results

suggest that the quality and diversity of datasets are key to

pre-training robust representations, supportive of prelimi-

nary experimental results where pre-training on increasing

quantities of similar data yielded improvements with di-

minishing returns. Our contributions include that we are

the first to conduct extensive deep learning experiments on

UCS, experiment on relevant data for a current problem,

and investigate an under-researched aspect of representation

learning with cross-dataset training in the audio domain.

We believe cross-dataset training is a prerequisite for

future work. Our current research does not leverage all

datasets available to us nor the abundance of taxonomies

they are comprised of given that many datasets did not

have sufficient labels for training. To leverage these re-

sources, methods to effectively work with large amounts

of diverse data become increasingly essential. Selecting

optimal cross-dataset training methods is fundamental be-

fore introducing new techniques, such as semi-supervised

or self-supervised learning to work with datasets of varying

label quality [53,54]. Accordingly, we would like to (i) look

into the connection between multi-task learning and cross-

dataset training to understand the specific advantages and

drawbacks of these approaches and (ii) conduct experiments

to assess the impact of increasing the amount of training

data, observing the relationship of this with more complex

network architectures and other pre-training methods [55].

Finally, we hope to deepen our understanding of UCS by

investigating the non-uniformity of class labels between

UCS-compliant datasets in this study, looking at the inter-

pretability and disentanglement of our representations [51],

and exploring the concept of a generalized embedding from

the perspective of taxonomy conversion [56].
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