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ABSTRACT

Validity is the truth of an inference made from evidence and

is a central concern in scientific work. Given the maturity of

the domain of music information research (MIR), validity

in our opinion should be discussed and considered much

more than it has been so far. Puzzling MIR phenomena like

adversarial attacks, horses, and performance glass ceilings

become less mysterious through the lens of validity. In this

paper, we review the subject of validity as presented in a key

reference of causal inference: Shadish et al., Experimental

and Quasi-experimental Designs for Generalised Causal

Inference [1]. We discuss the four types of validity and

threats to each one. We consider them in relationship to

MIR experiments grounded with a practical demonstration

using a typical MIR experiment.

1. INTRODUCTION

The multi-disciplinary field of Music Information Research

(MIR) is focused on making music and information about

music accessible to a variety of users. This ranges from sys-

tems for search and retrieval, to recommendation, and even

to more creative applications like music generation. The

effectiveness and reliability of MIR systems are of prime

importance to the MIR researcher, not to mention other

stakeholders. The researcher thus performs experiments

to compare approaches for modeling and retrieving music

data. A principal focus is on users, but the cost of perform-

ing experiments with users is high, and the replicability of

such studies is difficult. This has motivated the Cranfield

Paradigm [2]: computer-based experiments where “test col-

lections” serve as proxies for human users. While such an

approach is inexpensive and replicable, its relevance and

reliability for MIR, and information retrieval in general,

have been questioned [3, 4].

Under the Cranfield Paradigm, state-of-the-art MIR sys-

tems perform exceptionally well in reproducing the ground

truth of some datasets, e.g., inferring rhythm, genre or emo-

tion from audio data. This leads to conclusions that the
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systems are actually learning to perform the task believed

necessary to recover the ground truth from audio data. How-

ever, slight and irrelevant transformations of the audio, e.g.,

“adversarial attacks”, can suddenly render these systems

ineffectual [5–9]. Such attacks can reveal what an MIR

system is relying on for its success. In one case, a “genre

recognition” system relies on infrasonic signatures that are

imperceptible and irrelevant for human listeners [8]. In an-

other, a “rhythm recognition” system is recognising tempo

instead of rhythm, a confounding originating from the data

collection [6]. Systems relying on such “tricks” have been

called “horses” [5]. A related topic in MIR is “glass ceil-

ings” [10, 11], i.e., that an observed barrier to improving

system performance to perfect or human level is claimed as

coming from psychophysical and cultural factors of music

missing from features extracted from audio recordings [12].

In order to better understand the problems described

above it is necessary to consider what lies at the heart of any

experiment: the relationship between conclusions drawn

from its results and their validity, or “truth value” [1]. Ide-

ally, an experiment will be carefully designed and imple-

mented to answer a well-defined hypothesis. Its compo-

nents – units, treatments, design, observations, and settings

– should be carefully operationalised (translated from theory

into practice) to maximize quality and minimize cost (e.g.,

money and time). This is the purview of the discipline De-

sign of Experiments: how can one get the strongest evidence

for the least cost?

Despite a small chorus of calls to improve validity of

conclusions in MIR, e.g., [4–6, 13–19], there has yet to be

published a systematic and critical engagement of what va-

lidity means in the context of MIR, and how to consider it

when designing, implementing and analyzing experiments.

In this paper, we focus on the four principal types of validity

in Shadish et al. [1], an authoritative resource about validity

in causal inference and experimental science. Other typolo-

gies exist, e.g., [20], but we use that of Shadish et al. [1]

because it is an established point of reference, and has al-

ready been mentioned in the context of MIR, e.g., in [4].

We review the four types of validity and present actionable

questions that can help MIR researchers to scrutinize the

conclusions they draw from their experiments. We ground

our general discussion of validity in this paper by a practical

demonstration, 1 which presents a typical MIR experiment

1 See supplementary material here: https://github.com/

boblsturm/mirvaliditytutorial
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Model Accuracy Precision Recall f1-score

LDA 0.714 0.711 0.711 0.703

QDA 0.719 0.715 0.723 0.717

1NN 0.662 0.644 0.635 0.638

3NN 0.681 0.673 0.651 0.656

5NN 0.719 0.699 0.687 0.689

7NN 0.695 0.669 0.656 0.659

9NN 0.700 0.681 0.664 0.668

unif 0.12± 0.02 0.13± 0.03 0.12± 0.02 0.12± 0.02

freq 0.13± 0.02 0.13± 0.03 0.13± 0.02 0.13± 0.02

maj 0.16 0.02 0.12 0.03

Table 1. Accuracy, and macro-averaged precision, recall

and f1-score observed for several models in a testing parti-

tion of BALLROOM [21]. The performance of two mod-

els selecting labels randomly (with standard deviation) are

shown in the rows labeled: unif samples labels uniformly;

freq samples labels according to training data label fre-

quency. The last row maj shows the performance of a

model choosing the label most frequent in the training data.

that exemplifies a considerable amount of MIR research:

music classification using machine learning (ML) and a

benchmark dataset. We use the BALLROOM dataset [21],

which has appeared in dozens of studies seeking to build

MIR systems sensitive to rhythm [6]. We partition the

dataset into training and testing sets, extract features and

train ML models, then label test set recordings and count

coincident ground truth labels, and finally compute figures

of merit for the different ML models. Table 1 presents the

results from which we wish to draw valid conclusions.

A less abridged version of this paper [22] integrates the

supplementary material in more detail. We hope that these

materials will help MIR researchers to design, implement

and analyze experiments in MIR and draw valid conclu-

sions, but also convince them that the language of validity

is reason. Creative thinking is necessary when examining

the truth value of any conclusion drawn from an experiment.

2. COMPONENTS OF EXPERIMENTS

Before discussing the validity of conclusions drawn from

an experiment, we must identify its components: units,

treatments, design, observations, and settings. Treatments

are the things applied to units in order to cause an effect

(or not in the case of a control), units are the things that are

treated, and observations are what is measured on a unit.

The design specifies which treatment is applied to which

unit, and settings involve time, place, and condition. To

make this more concrete, consider a medical experiment in

which the effect of a treatment on blood pressure is being

studied. A number of people are sampled from a population,

some of whom will receive the treatment while the others

receive a placebo (control). The design describes which

people get the treatment, and which do not. The observation

is the blood pressure of a person after one month. The

setting can include particulars of the population (rural or

urban), place of treatment (hospital or home), and so on.

The experimentalist contrasts blood pressure observations

across groups to conclude, e.g., the effect of the treatment

(causes a decrease in blood pressure).

Our typical MIR experiment measures the effectiveness

of different ML models in predicting the labels of a test

recording dataset. There are two ways to see its compo-

nents. We can see the treatments as the ten models and the

units as replicates of the entire testing dataset, or we can

see the entire testing dataset as the one treatment and the

units as the ten models. Since Table 1 reports figures of

merit (observations) of each model on the entire test dataset,

the latter interpretation motivates conclusions about the ef-

fectiveness of particular models. In this case, the design is

simple: each unit (ML model) is given the same treatment

(dataset). The setting involves the dataset partitioning, the

extracted features, random seeds, software libraries, etc.

3. STATISTICAL CONCLUSION VALIDITY

Statistical conclusion validity is “the validity of inferences

about covariation between two variables” [1]. This includes

concluding that a covariation exists, and perhaps its strength

as well. This is the level at which one is concerned with

statistical significance, i.e., that an observed covariation

between treatment and effect is not likely to arise by chance.

As a concrete example, an experiment measuring the ef-

fects of two different medicines on lowering blood pressure

seeks to determine which of the medicines has the greatest

effect, if at all. The statistical conclusion validity of a con-

clusion resulting from this experiment relies on its power,

but can be threatened in other ways. Shadish et al. [1] (p.

45) includes a table of nine different threats to statistical

conclusion validity. Four threats relevant to computer-based

experiments are: violated assumptions about the statistics

underlying the observations (and the use of the wrong sta-

tistical test, a type III error [23]); a sample size too small to

reliably detect covariation (lack of power); the purposeful

search for significant results by trying multiple analyses and

data selections (“p-hacking” [24]); and increased variance

in observations due to the heterogeneity of units.

Are my results statistically significant? Null hypothesis

statistical testing (NHST) quantifies whether the observed

effects of the treatments on the responses arise by mere

chance, as well as the direction of effect and its size. This

answers the question: are the results statistically signifi-

cant? Fundamentals about statistical testing in MIR have

already been discussed [25], also for Artificial Intelligence

in general [26], and for ML [27]. One must take care in

selecting a statistical test to use; each one makes strong as-

sumptions that could be violated. NHST is most straightfor-

wardly applicable to completely randomized experimental

designs [28], thereby reducing the possibility of structure in

units and treatments interfering with the responses (which

results in confounding). Most MIR experiments cannot

use complete randomisation because the target population

from which samples come is unclear (what is a random

sample of “sad” music, with the term “sad” being quite

ill-defined?), and so the kinds of conclusions that can be

made with NHST in MIR are limited. 2

2 Experimental designs that cannot be completely randomised are called
quasi-experimental designs, another major topic of Shadish et al. [1].
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Is the observed statistical significance relevant for a

user? In MIR, even if one finds statistical significance, this

may not generalise to a perceivable difference for actual

users interacting with the “improved” MIR system. As an

example from MIR, a crowd-sourced user evaluation [29]

demonstrates that there is an upper bound of user satisfac-

tion with music recommendation systems of about 80%,

since this was the highest percentage of users agreeing that

two systems “are equally good.” In addition, for the MIREX

task of Audio Music Similarity and Retrieval it has been

demonstrated [29] that statistically significant differences

between algorithms can be so small that they make no prac-

tical difference for users.

Let us now consider the typical MIR experiment and

reason about what conclusions we can draw from it that

have statistical conclusion validity. Table 1 clearly shows

that each response of model to the dataset is greater than

the random approaches unif, freq and maj. How likely is it

that any of the responses of models is due to chance, i.e.,

that any of the models is actually no better than one of the

random approaches? Since we have the empirical distribu-

tions for unif and freq, we can estimate the probability of

either of them resulting in, e.g., a macro-average recall at

least as large as 0.6: p < e−200. 3 Hence, a valid statisti-

cal conclusion is that we observe a significant covariation

between the use of a machine learning model with these

particular features and the responses measured on a specific

partition of BALLROOM.

One might consider statistical conclusions relating to the

type of ML, i.e., Gaussian modeling (LDA and QDA) vs.

nearest neighbour modeling (KNN), or LDA vs. QDA. If

we conclude from Table 1 that Gaussian modeling performs

better than nearest neighbour modeling with these features

on 70/30 partitions of BALLROOM, we would be wrong.

This is a “type I error”, which is concluding there to be

a significant difference when in fact there is none. When

we perform this experiment 1000 times with random 70/30

partitions we observe that the difference between the best

response of a Gaussian model and the best response of

a nearest neighbour model is distributed Gaussian, and

that the probability of observing zero difference or less is

p > 0.41 for any of the figures of merit.

The most general statistical conclusion we can make

from Table 1 is that the responses we observe from ML

models are highly inconsistent with the responses of choos-

ing randomly. Each ML model knows something about

BALLROOM linking the features computed from a music

recording with its ground truth label. Because we do not

know the amount of variation in any response due to par-

titioning, we cannot make any valid statistical conclusion

about which type of ML model is the best for this particular

dataset. In order to go further, we must run the experiment

multiple times to obtain distributions of the contrasts. Even

then, however, we cannot say anything about the cause

of significant differences yet. This is where the notion of

internal validity becomes relevant.

3 See the supplementary material for an explanation.

4. INTERNAL VALIDITY

Internal validity is “the validity of inferences about whether

the observed covariation between two variables is causal”

[1]. While statistical conclusion validity is concerned only

with the strength of covariation between treatment and re-

sponses, internal validity is focused on the cause of a par-

ticular response to the treatment. Shadish et al. [1] (p. 55)

includes a table of nine different threats to causal conclu-

sions. Several of these involve confounding, which is the

confusion of the treatment with other factors arising from

poor operationalisation in an experiment. As a concrete

example, consider an experiment measuring the effects of

two different medicines on lowering blood pressure, but

where one medicine is given to young patients and the other

is given to elderly patients. This experimental design con-

founds the two medicines and patient age, and so the effects

caused by the two factors cannot be disambiguated. Any

conclusion from this experiment about the effects of the

medicines lacks internal validity.

Does my data collection introduce confounds? One’s

methodology for collecting data might unintentionally in-

troduce structure. For instance, it has been discussed that

BALLROOM was assembled by downloading excerpts of

music CDs sold at a website selling music for ballroom

dance competitions [6]. Ballroom dance competitions are

regulated by organisations, e.g., World DanceSport Feder-

ation (WDSF), 4 to ensure uniformity of events for com-

petitors around the world. These organisations set strict

requirements of tempo of each dance such that high skill is

required of the dancers. Hence, the labels of BALLROOM

can reflect any of the following: 1) the rhythm of the music;

2) the type of dance performed to the music; 3) the strict

tempo requirements of the dance in the context of competi-

tion. As a result, good performance in BALLROOM can be

due to rhythm detection and/or tempo estimation. Tempo

and rhythm are related musical characteristics, but they are

not the same thing [30].

Does my data partitioning introduce confounds? Dataset

partitioning can also introduce confounds, e.g., “bleeding

ground truth.” An example is to first segment recordings

into short (e.g., 40ms) time frames and then partition these

frames into training and testing sets, thus spreading highly

correlated features across these sets. In the context of

audio-based genre classification, the presence of songs from

the same artists or albums in both training and test data

has been shown to artificially inflate performance [31, 32].

Audio-based genre classification using very direct represen-

tations of spectral content has been shown [33] to degrade

more when employing artist/album filters than classifica-

tion based on more abstract kind of features like rhythmic

content (fluctuation patterns). This insight that problems

of data partitioning can affect MIR systems in quite differ-

ent ways and hence change performance rankings has been

confirmed in another meta-study [34].

Returning to our typical MIR experiment, of interest is

what it is in our trained ML models causing their response

to be inconsistent with random selection. Knowing how

4 https://www.worlddancesport.org/

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

49



Gaussian models used in LDA and QDA are built – mean

and covariance parameters are estimated from training data

– an internally valid conclusion is that these models work

well in BALLROOM because likelihood distributions esti-

mated from the training data also fit the testing data well.

Another internally valid conclusion is that the high perfor-

mances of these ML models in BALLROOM are caused

by the features together with the expressivity of the models

capturing information related to the labels in BALLROOM.

With reference to the aims of MIR research, we want

to conclude something more specific, e.g., our ML mod-

els have learned to recognize the rhythms in BALLROOM.

This is certainly one explanation consistent with our ob-

servations, but is it the only one? The internal validity of

this conclusion relies on a key assumption: inferring the

labels of BALLROOM can only be the result of learning

to discriminate between and identify its rhythms. In other

words, we must assume that there is no other way to infer

labels in BALLROOM than by perceiving rhythm.

Since we know tempo is highly correlated with rhythm

in BALLROOM, we thus perform an experiment to test

the sensitivity of our trained ML models to tempo: we

alter all test recordings by some amount of pitch-preserving

time dilation, and then measure the responses of the models

to these new treatments. We see that the responses of all

ML models decay to being not significantly different from

random selection with dilations in the range of ±15 %. We

see this intervention clearly reveals the extent to which the

ML models we test rely on the tempi in the test data.

The experimental design of the typical MIR experiment

does not account for the structure present in the dataset;

we do not control for other ways of inferring the labels

of BALLROOM, which are guaranteed to exist by its very

construction. From Table 1 and our experimental design, we

thus cannot be any more specific in our causal inference than

this: the responses of our ML models are caused by their

having learned something about BALLROOM. This then

calls into question how comparing predictions with ground

truth in BALLROOM relates to the ability we might actually

want to measure, that is the recognition of rhythm. This is

where the notion of construct validity becomes relevant.

5. CONSTRUCT VALIDITY

Construct validity is “the validity of inferences about the

higher order constructs that represent sampling particu-

lars” [1]. This involves the relationship between what is

meant to be inferred by the experimentalist from an experi-

ment and what is actually measured, i.e., the operationalisa-

tion of the experimentalist’s intention. For instance, directly

measuring the blood pressure of a person involves an inva-

sive procedure inserting a measuring device in their veins.

Blood pressure can be measured less invasively but indi-

rectly by externally applying known pressure to a vein and

listening for when blood flow ceases. Knowledge about the

incompressibility of liquids in closed systems makes the

measurement of pressure in the balloon a relevant measure

of blood pressure. Shadish et al. [1] (p. 73) includes a table

of fourteen different threats to construct validity, but several

of these are irrelevant to computer-based experiments. The

main threat is a questionable relationship between what

is being measured and what is intended to be measured.

Selecting a measure by convenience but not relevance, sam-

pling from convenient populations, and a lack of definition

of what is intended to be measured, are threats to construct

validity. Construct validity involves more than just how

something is measured; it also involves what is measured

and in what settings.

How is classification accuracy, or any figure of merit, in

a labeled music dataset related to X? Two examples in MIR

are the use of “genre” classification accuracy as an indirect

measure of music similarity [11], or user satisfaction (see,

e.g., [14] for a discussion). The relationship between these

is very tenuous, especially so considering that accuracy

itself is an unreliable measure of whether or not a system has

learned anything relevant to music [5, 15]. A key reference

in this respect is that of Pfungst [35] describing a series

of experiments in trying to reliably measure the arithmetic

acumen of a horse that was only able to tap out answers.

Counting the number of correct answers tapped out by the

horse, no matter how many questions are asked, is irrelevant

without considering how each question is posed (the setting).

The key to Pfungst discovering the cause of the horse’s

apparent arithmetic acumen involved changing the setting:

the questions remained the same, and accuracy of correct

response was measured, but how the questions were posed

was changed in order to control for different factors of the

experiment. The same is true for MIR.

What is the “use case” of the system to be tested? To

counter threats to construct validity the MIR experimental-

ist must operationalise as much as possible the use case of

the system to be built and tested. One attempt to do so for

music description [36] emphasises the need to define suc-

cess criteria. The experimentalist must determine how their

method of measurement relates to the success criteria, e.g.,

relating accuracy in genre classification to the satisfaction

of a specific type of user.

How can we test the construct validity of a conclusion?

One possibility is to assess the outcomes of different ex-

periments which are supposed to measure the same higher

order constructs. An example in MIR is to study corre-

lations of different genre classifiers when given identical

inputs [18]. Low correlations between classifiers point to

problems of construct validity. A related topic is that of

adversarial examples, which casts doubt on the conclusion

that the high accuracy of an MIR system in some dataset

reflects its “perception” of the music in the waveform. Ad-

versarial examples have first been described in image anal-

ysis [37], where imperceptible perturbations of input data

significantly degraded classification accuracy. For music

genre classification systems, imperceptible audio filtering

transformations of music signals have been used [5] to both

deflate and inflate classification accuracy to be no better

than chance level or perfect 100%. Following these so-

called untargeted attacks which try to change a prediction to

an arbitrary target, targeted attacks aiming at changing pre-

dictions to specific classes have been explored. A targeted
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attack on genre recognition has been reported [7], where

magnitude spectral frames computed from audio are treated

as images and attacked using approaches from image object

recognition. For music instrument classification a targeted

attack allowing to add perturbations directly to audio wave-

forms instead of spectrograms has also been presented [9].

The attacks were able to reduce the accuracy close to a ran-

dom baseline and produce misclassifications to any desired

instrument. The authors also artificially boosted playcounts

via an attack on a real-world music recommender, thereby

demonstrating that such attacks can be a security issue in

MIR. Follow-up work presented lines of defence against

such malicious attacks [38].

Returning to our typical MIR experiment, we are in-

terested in making construct inferences around the latent

ability of rhythm recognition we are supposedly measuring

in our ML models. For instance, one construct inference

is that our features measure relevant aspects of rhythm in

recorded music. In some sense, by their definition from ba-

sic signal processing components, our features come from

temporal aspects that are certainly relevant to rhythm. Our

features are also reliant on acoustic information, and in

particular there being high-contrast differences in onsets

captured by spectral flux – hence limiting their relationship

to rhythms played by particular kinds of instruments with

sharp attacks. However, we have seen above that the fea-

tures are also indicative of tempo, and that tempo is another

path an ML model can use to infer the rhythm label. Hence

we are left to question the relationship of our features to the

concept we are trying to operationalise, i.e., rhythm.

Having a system label any partition of the BALLROOM

dataset provides no reliable measure of a system’s ability

to recognise rhythm without changing the setting to control

for other factors. It is not as simple as choosing a differ-

ent feature, measure, cross-validation method, or using a

particular statistical test. One must change the experiment

itself such that rhythm recognition is what is actually being

measured. This means that BALLROOM can still be use-

ful to measuring the rhythm recognition of an ML model.

Indeed, in the previous section we used it to disprove the

causal claim that the good performance of the ML systems

of Table 1 is caused by their ability to recognize rhythm.

Might performance in BALLROOM also be an indication

of performance in other datasets focused on rhythm? This

is where the notion of external validity becomes relevant.

6. EXTERNAL VALIDITY

External validity is “the validity of inferences about the

extent to which a causal relationship holds over variations

in experimental units, settings, treatment variables and mea-

surement variables” [1]. More generally, external validity

is the truth of a generalised causal inference drawn from an

experiment. An example is inferring that medicine found

to lower blood pressure in patients living in Germany will

also lower blood pressure in people living in Mexico – a

conclusion that can lack validity due to differences in diet,

living and working conditions, and so on. Another example

is that increasing the dose of the medicine will cause blood

pressure to lower further in the studied population. If a

causal inference we draw from an experiment lacks internal

validity, then generalising that inference to include varia-

tions not tested will not have external validity. Shadish et

al. [1] (p. 87) includes a table of five different threats to ex-

ternal validity, which are in addition to the threats to internal

validity. The main threat is that variation of the components

of the experiment might destroy the causal inference that

holds in the experiment. For instance, a medication may

work for the type of illness tested, but that type of illness

may not be generalisable to other closely related illnesses.

Does my model generalize to out-of-sample data? The

standard approach in evaluating MIR classification systems

is to use separate train and test sets in cross-validation

experiments to obtain seemingly unbiased estimates of per-

formance. However, if such MIR systems are exposed to

independent out-of-sample data often severe loss of per-

formance is observed. One example are experiments on

genre recognition where accuracy results do not hold when

evaluated across different collections that are not part of the

training sets [39, 40]. The results do not generalize to sup-

posedly identical genre labels in different collections, which

reflects a lack of external validity. Genre labels like ‘Rock’

will be used differently by different annotators working on

these collections – which is also a threat to construct va-

lidity. Another example are how different audio encodings

affect subsequent computation of descriptors and classifica-

tion results [41], or how in general differences in software

implementations diminish replicability [42].

Do different raters agree on a ground truth? Human

perception of music is highly subjective resulting in pos-

sible low inter-rater agreement. Therefore only a certain

amount of agreement can be expected if several human

subjects are asked to rate the same song pairs according to

their perceived similarity, depending on a number of sub-

jective factors [14, 43] like personal taste, listening history,

familiarity with the music, current mood, etc. Concern-

ing annotation of music, it has been shown [44] that the

performance of humans classifying songs into 19 genres

ranges from modest 26% to 71%. Audio-based grounding

of everyday musical terms shows the same problematic re-

sults [45]. It has even been argued [12] that no such thing

as an immovable ‘ground’ exists in the context of music,

because music itself is subjective, highly context-dependent

and dynamic.

The lack of inter-rater agreement presents a problem of

external validity because inferences from the experiment do

not generalize from users or annotators in the experiment to

the intended target population of arbitrary users/annotators.

It is also a problem of reliability, since different groups of

users or annotators with their differing subjective opinions

will impede repeatability of experimental results. This lack

of inter-rater agreement presents an upper bound for MIR

approaches, since it is not meaningful to have computational

models going beyond the level of human agreement. Such

upper bounds have been reported [14,43,46] for the MIREX

tasks of ‘Audio Music Similarity and Retrieval’ (AMS) and

‘Music Structural Segmentation’ (MSS). For AMS the upper
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Accuracy Precision Recall f1-score

LDA 0.659 0.647 0.643 0.643

QDA 0.682 0.678 0.672 0.673

1NN 0.622 0.616 0.602 0.604

3NN 0.636 0.629 0.610 0.613

5NN 0.644 0.643 0.617 0.619

7NN 0.647 0.646 0.619 0.621

9NN 0.645 0.643 0.615 0.618

unif 0.12± 0.01 0.13± 0.01 0.12± 0.01 0.12± 0.01

freq 0.13± 0.01 0.13± 0.01 0.12± 0.01 0.12± 0.01

maj 0.13 0.02 0.12 0.03

Table 2. As in Table 1, models trained in BALLROOM and

tested in all of X-BALLROOM [51].

bound has already been reached in 2009, while for MSS

the upper bound is within reach for at least some genres of

music. Comparable results exist concerning music structure

analysis [47] and chord estimation [48, 49].

Do raters agree with themselves at different points in

time? Going beyond the question of whether different an-

notators agree on a ground truth one can also access what

the level of agreement within one person is when faced

with identical annotation tasks at different points in time.

A high intra-rater agreement would help to overcome the

problem of upper bounds in MIR systems since it would

make personalization of models meaningful, i.e. to have

separate models for individual persons. However, at least

for the task of general music similarity it has been shown

that intra-rater agreement is only slightly higher than inter-

rater agreement [19], with the absolute level also depending

on music material and mood of raters at test time. An ap-

proach to personalize chord labels for individual annotators

via deep learning was more successful [50].

Returning to the typical MIR experiment, we cannot

validly conclude that any of our models is recognizing

rhythm in general because we do not know if they are rec-

ognizing rhythm in BALLROOM. Our dilation intervention

experiment in Sec. 4 reveals that all of the models lose their

supposed ability to recognize rhythm in BALLROOM, so

there is no reason to infer they will recognize rhythm else-

where. One causal conclusion we might make is that our

models perform well in BALLROOM because they have

learned something about BALLROOM – a curated set of

recordings downloaded from a specific website in 2004.

Might they have learned something about other recordings

from that same website, but collected many years later?

The extended BALLROOM dataset (X-BALLROOM)

[51] consists of 3,484 audio recordings in the same eight

dance styles or music rhythms as BALLROOM, but down-

loaded from the same website over a decade later. This

gives us a chance to test our conclusion. The figures of

merit measured from our models trained in BALLROOM

but applied to all of X-BALLROOM are shown in Table 2.

We still see significant covariation between response and

the use of ML with our features. By and large, whatever

concepts our ML models have learned about BALLROOM

carry over to X-BALLROOM – but we still do not know

whether or not those concepts have to do with rhythm.

7. CONCLUSION

This paper provides a review of the notion of validity based

on the typology given in Shadish et al. [1]. It brings together

the few sources in MIR that mention validity, and several

sources that do not but are related. This paper does not aim

to prescribe how to design and perform experiments such

that valid conclusions can be drawn from them. Instead, it

aims to bring within the realm of MIR what validity means,

why it is important, and how it can be threatened. One thing

to reiterate is that one does not talk about the “validity of an

experiment”. An experiment does not possess “truth value”.

Validity is a property of a conclusion made given evidence

collected from an experiment. The components of an exper-

iment – units, treatments, design, observations, and setting

– have major consequences for the validity of conclusions

drawn from it, whether it is statistical conclusion validity,

internal validity, construct validity, or external validity.

In MIR the predominant experimental methodology is

the Cranfield Paradigm: train a model on a partition of a

dataset and count the number of correct answers on an-

other partition. This kind of experiment is inexpensive,

and provides numbers that can be compared in ways that

convince peer reviewers that progress has been accom-

plished [52]. Despite various appeals [14, 53] and beseech-

ings [4, 5, 15, 16, 19, 29, 43], such an experimental approach

is still standard in the field and its serious flaws are ignored.

Any conclusion from this experiment that is more general

than “the system has learned something about the dataset”

lacks internal, construct and external validity. This does not

mean that all such inferences are false, just that they cannot

follow from the experiment as designed and implemented.

Reproducing the ground truth of a dataset represents a be-

ginning and must be followed by a search for the causes of

the observed behavior.

Shadish et al. [1] provides an established starting point

for MIR, but there exist other types of validity. For instance,

Lund [20] revises the typology of [1] to address ambigui-

ties between causes and treatments, to better define aspects

of settings, and to establish a hierarchical ordering of five

types of validity: statistical conclusion, causal, construct,

generalization and theoretical. Other kinds of validity in-

clude ecological, convergent, and criterion [13], but these

still deal with the kind of conclusion one is drawing from

evidence collected in some way.

As a final note, a frustration when encountering Shadish

et al. [1] as an engineer is that of its 623 pages there are

only five pages with at least one equation on them. Instead,

Shadish et al. [1] describe experiments and how each type

of validity manifests in the conclusions drawn, with specific

threats to the reasoning of those conclusions. Experiments,

not to mention experimentalists, are such complex assem-

blages that expressing them in formal ways that appear to

permit the computation of numbers that relate to each type

of validity would probably have very limited applicability,

and then only be understood by a limited audience. The

language of validity is reason, and we hope this article

will inspire MIR researchers to think creatively about the

phenomena they observe to discover their causes.
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