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MUSIC CONCERTS

Gowriprasad R1 Srikrishnan S2 R Aravind1 Hema A Murthy1

1 Indian Institute of Technology Madras, 2 Carnatic Percussionist, 1,2Chennai, India

ee19d702@smail.iitm.ac.in, aravind@ee.iitm.ac.in, hema@cse.iitm.ac.in

2srikrishnansridharan@gmail.com

ABSTRACT

In Carnatic music concerts, taniāvartanam is a solo per-

cussion segment that showcases intricate and elaborate ex-

tempore rhythmic evolution through a series of homoge-

neous sections with shared rhythmic characteristics. While

taniāvartanam segments have been segmented from con-

certs earlier, no effort has been made to analyze these per-

cussion segments. This paper attempts to further segment

the taniāvartanam portion into musically meaningful seg-

ments. A taniāvartanam segment consists of an abhiprāya,

where artists show their prowess at extempore enunciation

of percussion stroke segments, followed by an optional

korapu, where each artist challenges the other, and con-

cluding with mohra and korvai, each with its own nuances.

This work helps obtain a comprehensive musical descrip-

tion of the taniāvartanam in Carnatic concerts. However,

analysis is complicated owing to a plethora of tāla and

nad. e. The segmentation of a taniāvartanam section can be

used for further analysis, such as stroke sequence recog-

nition, and help find relations between different learning

schools. The study uses 12 hours of taniāvartanam seg-

ments consisting of four tāla-s and five nad. e-s for analysis

and achieves 0.85 F1-score in the segmentation task.

1. INTRODUCTION

Carnatic music (CM) is a South Indian music tradition con-

sidered an ancient form of Indian art music (IAM). A typ-

ical CM concert features a lead artist, typically a vocal-

ist, accompanied by a violinist and percussion instrument

artists. The lead percussion instrument in this ensemble is

usually the mridangam, while additional percussion instru-

ments like the ghatam, khanjira, and morsing may also be

present. A CM concert includes a solo percussion perfor-

mance known as taniāvartanam, or tani for short. Tani is

a structured sequence of rhythmic elaborations performed

at a fixed metric tempo and bound to a metric cycle (tāla).

This study attempts to study the elaborations in tani, seg-

ment them using a culture-specific approach, and assigns

semantically meaningful labels.
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Audio recordings of concert performances available on-

line often lack detailed metadata and annotations regard-

ing section boundaries and other information, particularly

in the context of IAM. With the increasing availability of

music collections and digital devices, there is growing in-

terest in accessing music based on its characteristics. The

paucity of editorial metadata has necessitated the develop-

ment of music information retrieval (MIR) techniques to

extract music’s characteristic properties from audio record-

ings automatically. The paper is organized as follows. The

taniāvartanam structure is described, followed by the task

objectives, challenges, and dataset description. Domain-

specific feature engineering is done, and the task is ad-

dressed for different cases. The experimental results are

analyzed and discussed with culture-specific explanations.

1.1 Taniāvartanam Description

The tani is a highly structured and elaborate percussion

performance that is a prominent feature of CM, showcas-

ing the rhythmic skills and creativity of the percussionist.

The main percussion instrument is the mridangam, occa-

sionally accompanied by ghatam (clay pot), khanjira, and

morsing (Jew’s Harp). Since tani is part of a main item,

it is performed in the same tāla, and metrical tempo as the

main item. The intricacies are based on the precise mathe-

matical calculations of the metric cycle.

The duration of the tani is divided among the mridan-

gam and accompanying percussion to showcase individ-

ual artistry, e.g., if mridangam and ghatam are present, the

structural framework of the tani is typically as follows:

The mridangam always starts first by playing sarvalaghu

(SV) patterns (indicators of basic tāla structure), and the

complex patterns are introduced gradually. These elabora-

tions are performed in a particular rhythm structure called

nad. e (usually in chaturaśra at first) for a few rhythm cy-

cles. These elaborations on a particular rhythmic theme

are termed as abhiprāya. The literal meaning is "opinion",

i.e, the artists’ viewpoint of that particular rhythm struc-

ture. Ghatam follows and tries to keep the same theme

built by the mridangam in the first cycle by playing in the

same nad. e [1]. In the second cycle, the mridangist usually

may change the nad. e (to tiśra, for example) and elaborates.

The ghatam usually follows in the same nad. e or switches

to a different nad. e (khand. a). These may or may not con-

tinue for more than two cycles, usually owing to time con-

straints. Each abhiprāya ends with a pattern called korvai,

which is repeated thrice to arrive at downbeat.
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Figure 1. Spectral Illustration of a few Carnatic Percussion

Strokes. D: Damped Strokes, R: Resonant Strokes

These abhiprāya-s are followed by the korapu, usu-

ally seen as a question-answer between mridangam and

ghatam. Here it starts with multiple cycles of rhythmic pat-

terns by the mridangam followed by ghatam, where each

artist challenges the other. The duration of the rhythm pat-

terns in korapu keeps reducing progressively from full cy-

cle, half cycle, quarter cycle until it finally reduces to a

single beat. It can be translated as “rhythmic descent” or

“step-by-step reduction”. The artist(s) then start playing

together playing faster with crisp strokes (farans), build-

ing up the necessary momentum for playing the last parts

of the tani called mohra and longer korvai [1]. Each of

these has a specific composition structure upon which the

artist builds. This structure holds even if only the mridan-

gam is present, except that the korapu part might be absent.

Summarizing the sequence of sections in a tani segment

can be listed as sarvalaghu patterns abhiprāya in a specific

nad. e → change of nad. e → back to starting nad. e → korapu

→ farans → mohra → final korvai [2].

1.1.1 Aspects of timbre and spectral differences among

the Carnatic percussion

In Indian music tradition, accompanying instruments are

relatively tuned according to the main melodic instrument

or voice. The percussion instruments are also catego-

rized on the sonic aspect. Figure 1 illustrates the damped

(D) strokes and resonant (R) strokes of Carnatic percus-

sion instruments. Two-sided percussion, mridangam has

both the low-frequency and mid-frequency spectra cov-

ered. The ghatam occupies a little over the mid-frequency

band, and morsing predominantly spreads over the high-

mid frequency spectrum and has a larger resonance. Khan-

jira occupies a low-frequency spectrum a bit less than the

left side of the mridangam. This explains the aesthetic

quality of the percussion instruments that have been tra-

ditionally in use for CM concerts. The tonal nature also

enhances the entire concert when played harmoniously.

1.2 Problem Objective and Challenges

This work addresses three primary tasks: (1) Diariza-

tion of the audio into mridangam, khanjira, and ghat.am

sections when multiple instruments are present, (2) Es-

timation of section boundaries using musical attributes,

and (3) Classification of segments into broad categories

such as abhiprāya, korapu, farans, mohra, and korvai. To

achieve these goals, the paper applies techniques from

well-researched music genres while also considering the

culture-specific characteristics of tani. To improve read-

ability and clarity, several terms are defined in Table 1.

Identifying and understanding the segments in tani is

difficult for most CM audiences, except for professionally

Segment
Audio fragment between any two adjacent detected boundaries

that may or may not cover a complete section.

Section
A primary portion of the taniāvartanam. A section can contain

multiple compositions and multiple segments.

Nad. e

A modifier to tāla that decides the number of strokes per beat,

The subdivision structure within a beat in CM

Chaturaśra, Tiśra, Khand. a are different kinds of nad. e-s

Abhipraya (AB) A rhythmic elaboration in a particular nad. e during tani.

Korapu (KP) A musical dialogue between the musicians during performance.

Farans (FA)
The first part of the conclusion in tani where the

percussionists play fast to gain momentum toward the end.

Mohra (MO)
Popular rhythmic structure played after the farans hinting

the climax of taniāvartanam.

Korvai (KO) Stroke patterns that are played three times, concluding the tani.

Table 1. Definitions of terms relevant to this paper

trained and practicing percussionists. However, this chal-

lenge can be addressed if we have a reliable system that can

classify the primary segments in tani from audio record-

ings. Such a system would not only aid in appreciating the

art form for a broader audience, but also serve as a valuable

learning tool for beginner-level percussion students.

Coming to the challenges, tani is very diverse and ex-

tempore. The number of percussions may vary across the

concerts. The duration of the tani also varies, influencing

the number of possible segments. Additionally, the pres-

ence of the korapu section is contingent on the number of

percussions, which is rare when only mridangam is played.

Each rhythmic structure is presented at multiple speeds.

This is reflected in the boundary within a single abhiprāya

due to sudden tempo changes. The rendition also has small

pauses, which may be part of the rhythmic elaboration

or due to the artist’s presentation style. As a result, the

tani segmentation task presents unique challenges to exist-

ing audio segmentation methods. Listening to the entire

audio carefully to mark the segment boundaries is time-

consuming. This underscores the need to develop systems

for automatic segmentation and annotations.

1.3 Dataset Description

Experimenting with various shades of tani requires a di-

verse collection of annotated audio data. As there is no

properly annotated dataset available for this task, we col-

lected diverse recordings of tani and labeled them. All the

audio data used in this work is a subset of the Charsur Car-

natic [3,4], Sangeethapriya [5] datasets along with two au-

dios from [6]. The tani part from the main concerts is ex-

tracted by marking the start and end points. Professional

performers listened and annotated the boundaries of pri-

mary sections in the tani. By doing so, we collected around

12 hours of annotated tani audio. The duration of each tani

in the dataset ranges from 6 minutes to 29 minutes, with

11 minutes of mean duration.

The dataset details are described in Table 2. The con-

sidered audios comprises of tani played in four major tāla-s

of CM [7, 8], namely ādi, miśra chāpu, khand. a chāpu, and

rupaka. The annotations consist of tāla labels, boundary

instances, and labels of primary sections of tani. The mul-

tiple percussion audios considered in this work have only

two instruments along with additional labelings of the in-

strument name for their respective segments. The dataset is

heterogeneous with artist variability (22 mridangam, >12

ghatam, >8 khanjira), tonic, and tempo variability.
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No. of Abhiprāya No. of Concerts Duration ~ (hrs:mins)

Mridangam 51 16 02:24

Mrid + Ghat 86 18 04:56

Mrid + Khanj 94 21 05:47

Total 231 55 12:08

Table 2. Dataset Description.

1.4 Related Work

Segmentation and metadata labeling of a music recording

have a fairly good research history both in Western [9–11]

and IAM traditions [12, 13]. Various acoustic and tempo-

ral parameters were used for the segmentation task [9, 14].

Foote et al. [15] proposed a self-distance matrix method to

determine the boundary between contrasting musical char-

acteristics. The changes in musical features in Pop and

Rock music were used to train the boosted decision stump

[16]. Lately, [17] explored neural networks for structural

segmentation, spanning various genres [18].

In the context of IAM, different approaches were ex-

plored for segmenting the main concert audios in the

Dhrupad [13, 19, 20], Hindustani [21, 22], and Carnatic

[12, 23–25] music traditions. For instrumental concerts,

Vinutha et al. [22] considered the segmentation of sitar and

sarod concerts using reliable tempo detection [26]. The

analysis of rhythm/percussion in IAM has primarily fo-

cused on stroke onset detection [27, 28], stroke recogni-

tion [6, 29–33], and sequence modeling [34, 35] percus-

sion pattern identification [36]. Ajay Srinivasamurthy [37]

worked on tracking the "downbeat," provided the tāla is

known. Tani diarization was also attempted in [4]. Fur-

ther, mridangam artist identification from tani audio was

attempted [38]. Parallel to [38], tabla gharānā recognition

from the tabla solo was addressed in [39, 40].

Nevertheless, no attempts have been reported on the

structural analysis of Indian solo percussion. This paper

attempts to include additional meta-information to the tani

portion of a concert, where the audio is segmented based

on musical attributes. This can help identify the tāla and

enable the association of the cycle of strokes with that of

the lyrics of the main composition in CM. The outcomes

can help in the concert summarization task and for further

MIR studies in the field of percussion, which is crucial as

it can give insights into the rhythm of the main item of the

concert. Combined with works on meter tracking [7], per-

cussion source separation [41], and stroke recognition [6],

this could lead to additional metadata that could be impor-

tant to an ardent listener or performer.

2. AUDIO FEATURE ENGINEERING

The raw concert audios have to be pre-processed for further

analysis. Since each concert is unique in the choice of met-

ric tempo, tonic, and compositional structure, the features

used should be based on concert-specific characteristics.

At the same time, it should scale inter-concert. We address

the tasks by computing relevant features considering the

culture-specific musicological perspectives. Initially, the

raw audio is pre-processed by computing the Hilbert enve-

lope of the linear prediction (LP) residual on the raw audio

[27]. Then the onset detection function (ODF) is computed

Figure 2. Flow Diagram for Segmentation and Labeling

using the spectral flux method [42]. It is shown to perform

on par with state-of-the-art machine learning-based onset

detection algorithms on percussion instruments [27]. The

computed onset locations are considered for further rhythm

analysis. While we have used LP analysis, any onset de-

tection technique could have been used.

2.1 Rhythm and Tempo Features

The change in the rhythm structure or the tempo is a promi-

nent indicator of the section transitions. In the case of per-

cussion instruments, rhythm pattern refers to the aspects of

stroke patterns. A rhythm representation can be obtained

by considering the stroke ODF (sampled at 10 ms) over a

suitably long window and computing the auto-correlation

function (ACF). The periodicity analysis using the ACF of

the ODF represents the audio in terms of rhythm called

rhythmogram [43–45], where rhythm/tempo alone is em-

phasized.

The ACF of the ODF is computed frame-wise with a

frame length of 4 seconds and a frameshift of 0.5 seconds

up to a lag of 1 second. The dimension of each frame of the

rhythmogram is p = 100, corresponding to a 1-second lag.

The window length must be large enough to contain suffi-

cient strokes for computing the ACF. Even while playing a

slower tempo, we observe at least more than 8-10 strokes

(sufficient to calculate the periodicity) in a window length

of 4-5 seconds. A uniform window size of 4s is chosen to

accommodate variability in rhythm. The peaks along the

lag axis of the rhythmogram depict the periodicity of the

surface rhythm, indicating surface tempo [22].

The tempo estimation using the product of ACF-DFT

[46] is often prone to tempo octave errors due to uneven

stroke distribution. We compute the number of strokes in

each 4 seconds frame and divide by 4 to get the stroke den-

sity at every frame instance. The feature is named aver-

age stroke density (ASD), as the averaging is done over 4

seconds frame. The ASD is robust to tempo octave errors

and is representative of surface tempo [13]. The mean and

std. deviation of strokes per second, as obtained in the en-

tire dataset, are 8.6 and 3.8, respectively. The variance of

ASD depicts the tempo diversity in the dataset. Figure 4(c)

shows the evolution of ASD over time.

2.2 Spectral Feature

From Section 1.1.1, it is clear that each of the Carnatic per-

cussion instruments has distinct spectral properties, and the

spectral features can serve as potential features for instru-
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Figure 3. Self-Similarity Matrices on Different Features

ment classification. In this work, we need to localize the

segments as coming from one of the percussion. To get the

complete spectral aspects of a particular instrument, the

spectrum must be computed over a window with almost all

kinds of strokes. Thus we computed a narrow band spec-

trogram (NBS) with a window size of 4s and a hop size

of 0.5s. From Section 2.1, we know that the mean ASD

is eight strokes per second. Thus in a four-second frame,

we can expect at least one resonant stroke. We can clearly

distinguish mridangam and ghatam segments from NBS in

Figure 4(a).

2.3 Spectral and Rhythm Posteriors

The high-dimensional NBS and ACF rhythmogram repre-

sent the spectral and rhythmic-tempo homogeneity within

the segment and the changes between the adjacent seg-

ments. This allows us to use Gaussian mixture models

(GMM) to model the instrument’s spectral and temporal

homogeneity. The NBS and ACF vectors are converted to

spectral and rhythm posteriors (NBS-P, ACF-P), represent-

ing class conditional probabilities.

We use two mixtures GMM to represent NBS feature

vectors with the intuition that each instrument property is

modeled by one mixture. Interestingly we find that each

mixture corresponds to a different timbre. We also tried a

third mixture to represent the portion where both the in-

struments play together (FA, MO, KO). This failed due

to the volume dominance of mridangam and gave false

alarms. The posterior feature computed on NBS is de-

picted in Figure 4(d). The posteriors from the rhythmo-

gram are computed with five mixture components, each

representing a particular speed. The GMM is fit only on

the NBS and ACF vectors from a particular concert. The

number of Gaussians is determined by the different speeds

and nad. e-s expected in a concert.

3. TANI SEGMENTATION AND LABELING

Since tani may contain only mridangam or multiple in-

struments, we first need to detect if a particular tani au-

dio has multiple instrument or not. The abhiprāya region

segmentation task is slightly different in both cases. Lo-

cating the abhiprāya boundaries is based on detecting a

change in the instrument itself (in case of multiple instru-

ment) and the local rhythmic structure of segments at the

highest timescale (in case of solo mridangam). Figure 2

shows the overall steps involved in the task. Each of the

segmentation and labeling steps is described here.

3.1 Multiple Instrument Detection

From Sections 1.1.1, we know that different Carnatic per-

cussion instruments differ in their sonic and timbral aspects

Figure 4. Eg: Multiple Instrument Tani: Segment labels

on top (a) NBS feature (b) ACF Rhythmogram with NF-

ACF+P overlay-ed (c) ASD evolution over time (d) Poste-

riors computed on NBS (e) NF-NBS-P (red) obtained from

(15s× 15s) kernel, NF-NBS (blue) from (3s× 3s) kernel

(f) NF-NBS-P replaced with NF-ACF+P in last 2.5 min in-

dicating FA, MO, KO boundaries, and ground truth

and occupy different frequency bins in the spectrum. We

use the NBS extracted in Section 2.2 from all the available

audios. We built a Gaussian Mixture Model (GMM) on

NBS with five mixtures, one for each class – mridangam,

ghatam, khanjira, mrid-ghat, mrid-khan. If the ratio of the

number of frames from any two classes to the total num-

ber of frames in a concert is greater than 20%, then that

concert is classified as having multiple instruments. Oth-

erwise, we verify if most frames are from mridangam (at

least 80%) and classify it as single instrument mridangam.

We performed GMM classification on MFCC features as

well. Both methods gave 100% classification accuracy in

detecting multiple percussion instruments in a recording.

3.2 Novelty Function Computation

The aim is to get an NF whose peaks indicate the desired

segment boundaries. Given the ACF, ACF-P, NBS, and

NBS-P feature vectors, the Self-Similarity Matrices (SSM)

are computed on each of them using L2 distance mea-

sure [10]. The SSM obtained on the ACF, ACF-P, NBS,

and NBS-P are displayed in Figure 3. The homogeneous

segments of length L frames possibly appear as (L × L)
blocks. The section change points with high contrast in

SSM are captured by convolving a checker-board kernel

along the diagonal of SSM [15]. The 1D output obtained

is called a novelty function (NF). The peaks of the NF in-

dicate the segment boundary instances having high con-

trast in SSM. The obtained NFs are (1) the average of NF-

ACF, NF-ACF-P (Figure 4(b), Figure 5(a)), (2) NF-NBS,

and NF-NBS-P (Figure 4(e).

NFs are computed by convolving (15s × 15s) ker-

nel with SSM of different features. Peak picking is per-

formed by maintaining a minimum distance between ad-

jacent peaks as 5s. We experimented with smaller ker-

nel sizes such as (3s × 3s), and (5s × 5s), resulting in

noisy NFs. This decreased the precision due to a lot of

false positives. Though much larger kernel sizes, such as

(50s×50s), made the NFs smoother, they compromised in
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Figure 5. Eg: Solo Mridangam Tani, (a) ACF Rhyth-

mogram with NF-ACF+P overlay-ed along with detected

peaks (b) First Dominant peak along the Lag axis FDL

(yellow), and its 1st diff. FDL-1D highlighting the dis-

continuities (c) FDL computed on the Gaussian smoothed

ACF (yellow) and its 1st diff. FDL-1D (white) (d) NF-

FDL-ACF (black) is a point-wise product of NF-ACF+P

(red) and FDL-1D (blue) (e) NF-FDL-ACF replaced with

NF-ACF+P in last 2.5 min indicating FA, MO, KO bound-

aries along with ground truth, and the segment labels below

resolving the closer boundaries. All the features and NFs

in this work are computed at the resolution of 0.5 seconds.

3.3 Case1: Multiple Instrument Tani

In the case of multiple instrument tani, each round of indi-

vidual percussion elaboration is considered one abhiprāya

(one thematic development). Thus instrument change

point detection is necessary and sufficient for getting the

abhiprāya boundaries. Since the instrument change points

are visually evident from the NBS, we used NF-NBS and

NF-NBS-P to get the boundaries. A NF obtained from a

smaller kernel enhances the rapid instrument change in the

KP section, useful in localizing the KP section but creat-

ing false positives during segmentation. The first portion

of the KP section is fairly large. A larger kernel empha-

sizes only the start instance of KP by suppressing the rapid

instrument change. Thus we used NF obtained from a

larger (15s×15s) kernel for the segmentation task and the

smaller (3s× 3s) kernel NF for localizing the KP section.

The FA, MO, and KO are always played toward the end

of the tani and the FA has a higher ASD. As we see in the

Figure 4(e), NF-NBS and NF-NBS-P do not capture these

change points. Thus we replace the last two and a half min-

utes of NF-NBS-P with the average of NF-ACF and NF-

ACF-P (NF-ACF+P). This gives the final NF (’red’ curve

in Figure 4(g)) in the case of multiple instrument tani. We

empirically choose the last 2.5 mins as the FA, MO, KO

are always found in the last 2.5 mins in the entire dataset.

3.4 Case2: Solo Mridangam Tani

Computing the AB boundaries on solo mridangam tani is

a tough task, as the AB change needs to be detected based

on the rhythm (nad. e) change. Nad. e change detection is

pivotal in getting the AB boundaries, especially in the case

of solo mridangam tani. Relying only on the raw rhyth-

mogram features (NF-ACF+P) creates false alarms due to

multiple tempo changes and irregularities within a single

AB segment. This necessitates the computation of a ro-

bust function to tempo octave changes but also captures the

non-octave tempo changes that indicate the nad. e changes.

We initially set to track the first peak along the lag axis

of the rhythmogram over time, and the change in the peak

lag apart from doubling and halving is expected to indi-

cate the nad. e change. But this is also found to be noisy

(’yellow’ curve in Figure 5(b)). Thus, we perform hori-

zontal Gaussian smoothing on the rhythmogram to mask

the irregularities, then pick the first dominant lag peak

(FDL). This fetched a smoother curve (’yellow’ curve in

Figure 5(c)) having discontinuities around the nad. e change

with less tempo octave errors. The peaks on the first

difference of this curve (FDL-1D) gave fairly good nad. e

change estimates, along with a few false positives. We

can observe that the peaks of both NF-ACF+P and FDL-

1D (Figure 5(d)-E1) coincide around the nad. e change in-

stances but not elsewhere. Thus we perform "AND" oper-

ation by multiplying NF-ACF+P and FDL-1D to get a NF

which is an indicator of nad. e change. We can observe that

the false positives are considerably reduced. Again we can

see that towards the last FA-MO-KO portion, this NF is

not indicating FA-MO-KO boundaries. Thus, we replace

the last two and a half minutes of NF-FDL-ACF with NF-

ACF+P, similar to Case1. This gives the final NF in the

case of solo mridangam tani (’black’ curve in Figure 5(e)).

3.5 Section Classification and Labeling

Given the hypothesized segment boundaries, the task is to

classify each segment with appropriate labels. Each sec-

tion, AB, KP, FA, MO, and KO, has unique structural, po-

sitional, and duration characteristics common across the

concerts. We use the characteristic musical cues to classify

and label the segments. For the multiple instrument tani, a

NF obtained from a smaller kernel (3s×3s) gives multiple

peaks in the KP portion. The hypothesized segment hav-

ing multiple peaks is labeled as KP [Figure 4(e)(E-2)]. The

segments before the KP are classified broadly as AB. We

compute the mean of ASD in each segment. As the ASD is

high during FA-MO, the segment after KP having the high-

est mean-ASD is labeled FA [Figure 4(c)(E-1)], followed

by KO at last. Labeling of FA, MO, and KO is the same for

solo mridangam concerts as well. Korapu is not present if

only mridangam is present. All the segments before FA are

broadly labeled as AB for solo mridangam concerts. Thus

the algorithm with a set of rules based on the structure of

tani and the domain knowledge performs classification and

labeling. Implementation, annotations, and dataset details

are shared for research purposes 1 .

4. ANALYSIS OF RESULTS AND DISCUSSION

The tani structural segmentation task is approached as a

boundary detection task, where the presence or absence of

1 https://bit.ly/3XIJfMa
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Case Section Precision Recall F1-Score

Multiple

Percussion

AB 0.92 0.99 0.96

KP-FA-MO-KO 0.82 0.89 0.86

Overall 0.87 0.94 0.91±0.03

Single

Percussion

AB 0.7 0.82 0.74

FA-MO-KO 0.82 0.86 0.83

Overall 0.75 0.84 0.79±0.05

Table 3. Segmentation Results

a boundary is examined in uniformly spaced feature frames

of 0.5 seconds. Unlike stroke onset detection, the task is

addressed at a larger time scale and thus has a tolerance

duration in "seconds" rather than milliseconds [27, 47]. A

true-positive detection is one where the prediction bound-

ary falls within ±3 seconds of the ground truth boundary,

while a false-positive detection is one where it does not.

Precision, recall, and F1-scores are used for evaluation.

Evaluation is performed on the entire dataset, as the pro-

posed method is unsupervised, and no model training is

done.

The segmentation evaluation scores for each case and

individual sections are tabulated in Table 3. The recall is

good in all cases, indicating that the system successfully

detects the desired boundaries considerably. We can ob-

serve that the precision is consistently less than recall, in-

dicating false positives. The change in local rhythm struc-

ture, which may be both gradual and abrupt, causes peaks

in the NFs. The gradual change in rhythm structure can be

seen often in the AB section as it is extempore.

In Case 1, the AB boundaries are identical to the in-

strument switching instances, and the NF-NBS/NF-NBS-

P captured it well with a 0.96 F1-score. The KP-FA-MO-

KO section performance is slightly lower, as the rapid in-

strument switching caused false positives. The end of the

KP section is not always evident as the cycle duration re-

duces to one beat. A small SV pattern may also exist after

KP while moving towards FA, making boundary detection

challenging. Since MO is played along with or immedi-

ately follows the FA, the FA-MO boundary is often missed,

reducing recall.

In Case 2, the AB boundaries are not straightforward.

The local variations, tempo doubling and halving cause

false positives when the NF-ACF and NF-ACF-P are used.

These local variations also cause the first dominant lag

on the ACF to be noisy. The horizontal averaging of the

rhythmogram aided in noise-free first dominant lag tracing

and considerably reduced false positives, but still, the false

alarms persisted. The nad. e changes are also very gradual

in many cases, which are not evident with tempo-related

ACF analysis. For example, while transiting from 6 to 5

strokes per beat, the change is hardly noticeable when the

metric tempo is fast. A few of the AB boundaries are also

missed during smoothing. The performance on the FA-

MO-KO is similar to Case:1, as the NF-ACF+P is used in

the last 2.5 mins for both cases. Case 2 has more variance

in F1-Score than Case 1. The average F1-score for both

cases combined is 0.83.

We also experimented with ±5s and ±1s tolerance win-

dows. The overall recall increased by 0.2 with a marginal

increment in precision for the ±5s case. The ±1s case re-

ported a drop of precision and recall by 0.4 and 0.3, respec-

tively. This is evident as 1s corresponds to only two feature

frames in this work, and many boundaries are missed.

Section classification performance is evaluated by con-

sidering the ground truth markings. We quantify the per-

formance of calculating the ratio of correctly classified

frames to the total number of frames in a tani. The

weighted average of correctly classified frames in the en-

tire dataset considering the lengths of each tani is 92%.

That is, given 10m of segmented tani, around 9m-15s of

the frames are correctly labeled as AB, KP, FA, MO, KO.

5. CONCLUSIONS

This work has addressed an unexplored problem, structural

segmentation, and labeling of tani audios. We motivate the

problem and present different facets and challenges in the

task. From the experiments performed, it is clear that in-

dividual features alone are inadequate for segmentation. A

culture-specific approach is clearly required, both in fea-

ture choice and modeling. Timbre is used when it is re-

quired to detect if multiple instruments are present in the

tani, and MFCC features were found to be adequate. On

the other hand, detecting AB sections required analysis of

both timbre and rhythmogram to detect boundaries. Iden-

tifying AB sections when two percussion instruments are

present is quite easy. In contrast, determining AB sec-

tions in a solo percussion instrument is difficult as nad. e

changes/speed changes are difficult to determine. The hope

is that such a task will aid in including additional meta-data

w.r.t a concert.

The major contributions of this work are as follows: (i)

curating a diverse dataset of tani recordings of around 12

hours having section boundary information along with pri-

mary section labels, (ii) evaluating the existing MIR tech-

niques with culture-specific adaptation for a musicologi-

cally important task, segmentation and labeling of tani,

(iii) formulating average stroke density (ASD) feature (a

representative of surface tempo), which is robust to tempo

octave errors, (iv) formulating the class-conditional prob-

ability features from the rhythmogram, and spectral fea-

tures, and (v) exploring the combination of different NFs

obtained from different features to achieve the task. Fi-

nally, this work provides an example of adapting available

MIR methods to genre-specific problems by performing

appropriate feature engineering.
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tabla modelling using variable-length markov and hid-

den markov models,” Journal of New Music Research,

vol. 40, no. 2, pp. 105–118, 2011.

[35] P. Chordia, A. Sastry, T. Mallikarjuna, and A. Albin,

“Multiple viewpoints modeling of tabla sequences.” in

Proc. 11th International Society for Music Information

Retrieval (ISMIR), 2010.

[36] S. Gupta, A. Srinivasamurthy, M. Kumar, H. A.

Murthy, and X. Serra, “Discovery of syllabic percus-

sion patterns in tabla solo recordings,” in Proc. 16th

International Society for Music Information Retrieval

(ISMIR); 2015.

[37] A. Srinivasamurthy, “A data-driven bayesian approach

to automatic rhythm analysis of indian art music,”

Ph.D. dissertation, Universitat Pompeu Fabra, 2017.

[38] K. Gogineni, J. Kuriakose, and H. A. Murthy, “Mridan-

gam artist identification from taniavartanam audio,” in

Proc. Twenty Fourth National Conference on Commu-

nications (NCC). IEEE, 2018.

[39] R. Gowriprasad, V. Venkatesh, H. A. Murthy, R. Ar-

avind, and K. S. R. Murty, “Tabla Gharana Recognition

from Audio Music recordings of Tabla Solo perfor-

mances,” in Proc. 22nd International Society for Music

Information Retrieval Conference, 2021.

[40] R. Gowriprasad, V. Venkatesh, and S. R. Murty K,

“Tabla gharana recognition from tabla solo record-

ings,” in Proc. National Conference on Communica-

tions (NCC), 2022.

[41] N. Dawalatabad, J. Sebastian, J. Kuriakose, C. C.

Sekhar, S. Narayanan, and H. A. Murthy, “Front-

end diarization for percussion separation in taniavar-

tanam of carnatic music concerts,” arXiv preprint

arXiv:2103.03215, 2021.

[42] S. Dixon, “Simple spectrum-based onset detection,”

MIREX 2006, p. 62, 2006.

[43] K. Jensen, “Multiple scale music segmentation using

rhythm, timbre, and harmony,” EURASIP Journal on

Advances in Signal Processing, vol. 2007, pp. 1–11,

2006.

[44] P. Grosche and M. Muller, “Extracting predominant lo-

cal pulse information from music recordings,” IEEE

Transactions on Audio, Speech, and Language Pro-

cessing, vol. 19, no. 6, pp. 1688–1701, 2010.

[45] K. K. Jensen, “Rhythm-based segmentation of popular

chinese music,” in Proc. 6th International Society for

Music Information Retrieval (ISMIR), 2005.

[46] G. Peeters, “Template-based estimation of time-

varying tempo,” EURASIP Journal on Advances in Sig-

nal Processing, vol. 2007, pp. 1–14, 2006.

[47] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury,

M. Davies, and M. B. Sandler, “A tutorial on onset de-

tection in music signals,” IEEE Transactions on speech

and audio processing, vol. 13, no. 5, pp. 1035–1047,

2005.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

63


