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ABSTRACT

Optical Music Recognition (OMR) is the field of research

that studies how to computationally read music notation

from written documents. Thanks to recent advances in

computer vision and deep learning, there are successful ap-

proaches that can locate the music-notation elements from

a given music score image. Once detected, these elements

must be related to each other to reconstruct the musical

notation itself, in the so-called notation assembly stage.

However, despite its relevance in the eventual success of

the OMR, this stage has been barely addressed in the liter-

ature. This work presents a set of neural approaches to per-

form this assembly stage. Taking into account the number

of possible syntactic relationships in a music score, we give

special importance to the efficiency of the process in order

to obtain useful models in practice. Our experiments, using

the MUSCIMA++ handwritten sheet music dataset, show

that the considered approaches are capable of outperform-

ing the existing state of the art in terms of efficiency with

limited (or no) performance degradation. We believe that

the conclusions of this work provide novel insights into

the notation assembly step, while indicating clues on how

to approach the previous stages of the OMR and improve

the overall performance.

1. INTRODUCTION

Optical Music Recognition (OMR) is the field of research

that enables the automatic reading of music notation from

scanned documents [1]. OMR has become increasingly

important due to its potential for a better preservation of

music archives, while also facilitating new data to the

wealth of Music Information Retrieval algorithms that rely

on symbolic formats [2, 3].

As in many other fields, deep learning brought about

a drastic change in the performance of the proposed ap-

proaches for OMR [4]. As we will mention in the next sec-

tion, tasks that used to be a difficult barrier are now feasible
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and successful models are known, e.g., staff detection [5]

or the identification of musical symbols in the image [6].

However, although these tasks are the first obstacles of an

OMR system, they are not enough to complete the pro-

cess. Once the graphic elements have been identified, it is

necessary to reconstruct the musical notation itself by in-

ferring the syntactic relationships that exist between such

elements, namely notation assembly.

To account for all existing relations, the retrieval is usu-

ally performed in a pairwise fashion among all the identi-

fied graphic units. On this note, given the (typically large)

density of elements within music score images, the task

exhibits a high computational complexity that complicates

its integration in an end-user application. Therefore, in ad-

dition to accuracy, one must carefully take into account the

efficiency of this type of schemes.

This work addresses the efficient estimation of all the

syntactic relations among the elements of a music score us-

ing neural network. More precisely, we propose and assess

two approaches to address this task in an efficient manner:

one that is based on classifying each pair of elements em-

ploying a series of numerical features, while the other uses

asymmetric kernels [7], which can be computed with high

parallelization and provide results very fast. In our exper-

iments, using the well-known MUSCIMA++ corpus, we

will compare the trade-off between effectiveness and effi-

ciency that these methods provide and discuss the experi-

mental outcomes. In addition, assuming that the previous

stages of the process may contain errors, we also assess

the robustness of the assembly proposals by intentionally

degrading the estimations of these precedent phases. This

analysis is expected to provide useful insights for the ade-

quate design of notation assembly methods in OMR.

The remainder of the paper is as follows: in Section

2, we provide some background on the field of OMR; in

Section 3, we present the problem and the proposed ap-

proaches; in Section 4, the complete experimental setup is

described; in Section 5, results are reported and discussed;

and, finally, the main conclusions of the work are summa-

rized in Section 6.

2. RELATED WORK

Traditionally, OMR has been considered a multi-stage pro-

cess [8]. The legacy pipeline distinguishes four stages:
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(i) image preprocessing, including tasks such as binariza-

tion [9], distortion correction, or stave separation [10]; (ii)

music symbol detection, including steps such as staff-line

removal [11], connected-component search, and classifi-

cation [12]; (iii) notation assembly, where the independent

components are related to each other to reconstruct the mu-

sical notation [13]; and (iv) encoding, in which the recog-

nized notation is exported to a specific language that can be

stored and further processed by computational means [14].

With the rise of deep learning, many of these steps

have been reformulated as machine learning problems to

be solved by neural networks [15, 16]. Also, many stages

have been merged, giving rise to models that are capable

of locating and categorizing the musical elements of the

given image in a single step. This task has been the sub-

ject of extensive recent research [6, 17–19]. Alternatively,

the so-called holistic or end-to-end approaches that seek

to perform the entire pipeline in a single step have also

been proposed, often with some prior pre-processing such

as staff segmentation [14, 20, 21].

Although end-to-end approaches seem promising, so

far they have only been successfully implemented for

monodic music collections, where there is a clear left-to-

right reading order. This is useful in many of the histori-

cal music heritage, such as plainchant or mensural music,

where the different voices (if any) typically appear on dif-

ferent pages or sections, and staves are therefore monodic

in the graphical sense. However, to deal with the common

western modern notation, multi-stage OMR approaches

seem to be the only ones capable of dealing with such com-

plexity [4].

However, despite the aforementioned recent advances

in the detection of music symbols with deep learning, there

are hardly any proposals that complete the notation assem-

bly stage employing machine learning techniques. To our

knowledge, the only existing work that focuses on the re-

trieval of relationships using learning techniques is that of

Pacha et al. [22]. In such work, for each pair of nodes,

a single image is built with different channels: one that

depicts the area of the image that contains both nodes, an-

other that depicts the same region but only shows the first

node, and a last one that depicts also the region of inter-

est but only with the second node. A Convolutional Neural

Network (CNN) is then trained to recognize whether or not

there is a relationship between the nodes involved in this

three-channel image. Despite the reported good results,

the approach is tremendously inefficient, since it requires

the independent construction and classification of an image

for each pair of nodes. As we will see below, this scheme

entails a huge computational complexity that makes it in-

feasible to use in practice.

In this paper, we especially focus on providing a so-

lution to the notation assembly stage with a level of effi-

ciency that enables its use in a real system, while keeping

good accuracy figures.

3. METHODOLOGY

This paper follows the formulation proposed in previous

works [19, 22, 23], where it is assumed that the computa-

tional reading of a music score, in the context of OMR, can

be described by retrieving a graph structure from the im-

age. In this graph, the atomic notation elements (referred

to as “primitives”) represent nodes, while edges denote the

relationships between them. Here, we are particularly in-

terested in the retrieval of the edges, once the nodes have

been detected somehow (for instance, with the existing ap-

proaches mentioned in the previous section). Note that,

instead of relying on case-specific heuristics, we frame the

task within a learning-based formulation due to its inherent

capability of modeling any relationship among the primi-

tives as far as there exists a set of annotated reference data.

Therefore, the formulation is general and can be used as

long as there is a training set consistent with the envisioned

model for the music-notation graph.

3.1 Formulation

A graph is a mathematical structure that models pairwise

relationships between elements—referred to as nodes or

vertices—through its edges. Here, we aim to retrieve the

edges (relationships) between each pair of nodes in music

scores, where each node represents a music primitive—

e.g., a notehead, a stem, or an accidental. 1 The formal

definition of the problem is as follows.

We assume that for a given music score s there ex-

ists a graph gs that represents its symbolic music notation.

The graph is defined as a pair (V,E), where V denotes

the set of nodes and E denotes the set of edges. Two

nodes vi, vj ∈ V are connected if there exists an edge

ei,j = (vi, vj) ∈ E.

In the context of OMR, information about the set of

symbols V corresponds to the music symbol detection

stage of the OMR pipeline. Although they are still far from

perfect, there are approaches in the literature that address

this stage (cf. Sect. 2). Therefore, we here assume that

there exists a function that maps s onto set V . Typically,

each symbol vi ∈ V is further represented as a set of fea-

tures with, at least, the following information: primitive

class and coordinates within the image score. The problem

we address from now on is how to get the set E given V ,

which corresponds to the notation assembly stage of the

OMR pipeline.

The problem can be considered as a binary classifi-

cation task in which a model predicts the class between

each pair of nodes vi, vj present in the score. In this re-

gard, ei,j is labeled as a 1 if there is a relationship be-

tween vi and vj , and 0 otherwise. The prediction of

the relationship—henceforth, êi,j—can be represented as

a function ϕ(vi, vj) that takes the two nodes’ features as

input and computes the probability of connection, i.e.,

P(ei,j = 1). Figure 1 depicts a general outline of the

methodology adopted in this work.

1 Hereafter, we use the terms “node”, “symbol”, and “primitive” inter-
changeably: a graphical element placed in the music score with certain
attributes.
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Figure 1: General schema of the methodology for retriev-

ing the edges of the music notation graph.

3.2 Approaches

From the formulation given above, it is important to em-

phasize that the complexity of predicting each possible

edge belongs to O(|V |2). Therefore, the approaches to ϕ

must take into account the computational cost to make the

task feasible in practice. This is a driving criterion for our

approaches below since, with a sufficient number of prim-

itives in a score, no system depicting the aforementioned

complexity would be practical in a real-world scenario.

We here propose two shallow neural architectures that

take a pair of nodes and predict the class of the relation-

ship. These two neural architectures are: (i) a Multilayer

Perceptron (MLP) architecture that takes the input of each

node’s features concatenated; and (ii) an asymmetric ker-

nel model.

3.2.1 MLP architecture.

In this method, the features—attributes—of the nodes are

first concatenated, forming a single feature vector that con-

tains the entire information from the pair of nodes. Then,

this vector is passed through a series of layers of an MLP.

The final layer implements a function σ that models the

probability of the two input nodes being connected:

êi,j = σ(ϕMLP([vi, vj ]))

3.2.2 Asymmetric kernels.

In this second scheme, our proposed neural architecture

learns an asymmetric kernel (AsymK) function [7]. This

function is defined by k(v1, v2) = (⟨φk1
(v1), φk2

(v2)⟩),
where ⟨·, ·⟩ is the dot product of two N -dimensional points

in two Hilbert spaces—features spaces. In this work, we

use this asymmetric kernel as a similarity function between

the two mapped features to distinct Hilbert spaces as:

êi,j = σ(⟨φk1
(vi), φk2

(vj)⟩)

In this approach, φk1
(v1), φk2

(v2) are kernels imple-

mented as dense neural layers that map the initial node

features onto two different (asymmetric) spaces that suit

the task at hand. After computing the similarity score, a σ

function is applied to obtain probabilities between 0 and 1.

Note that, since the embeddings are calculated only

once per node, the scheme is remarkably efficiency. For

each possible relationship, it is only necessary to compute

the dot product between node embeddings and apply the σ

function. That is why the complexity is much lower than

the previous approach.

3.2.3 Loss function.

In both neural architectures proposed, the objective is to

minimize the binary cross-entropy (BCE) loss function

LBCE =
∑

ei,j∈E

ei,j log(êi,j) + (1− ei,j) log(1− êi,j)

(1)

where êi,j corresponds to the probability predicted by the

model and ei,j is the ground-truth data for the edge (1 for

a positive relationship, 0 otherwise).

4. EXPERIMENTS

In this section, we describe the experimental setup for eval-

uating the neural architectures proposed. More precisely,

the rest of the section presents the corpus considered for

the experiments, the contemplated figures of evaluation,

the implementation details of the two neural proposals, and

the feature descriptions used.

4.1 Data

The experiments were carried out using the MUSCIMA++

dataset [23]. This corpus provides 140 handwritten mu-

sic scores with manual annotations of the different musical

symbols—primitives defined by the symbol bounding box

and the corresponding class label—and existing relation-

ships among them. The dataset provides the direction of

the edges; in our work, however, an undirected edge is as-

sumed between two nodes that are connected regardless of

the specific direction (undirected graph). Figure 2 depicts

an example from this corpus.

Figure 2: Example of a music score extracted from the

MUSCIMA++ dataset.

Concerning the data partitioning, we follow a 5-fold

cross-validation scheme. At each iteration, 60% of the

dataset is used for training, 20% is used for validation, and

20% is used as test.

Finally, it must be highlighted that each music sheet de-

picts an average value of 734 primitives, which constitutes

a large number of relations to be modeled. Due to this,
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and as aforementioned, efficiency must be considered in

the design of practical notation assembly strategies.

4.2 Figures of merit

We consider a two-fold assessment of the proposed ap-

proaches, i.e., we evaluate their recognition capabilities as

well as efficiency rates. These criteria are now detailed.

In terms of recognition performance, as in previous

works considering the same evaluation corpus [22,23], we

resort to the F-measure (F1) metric. Note that, instead of

providing the average scores for the two classes, the fig-

ures reported exclusively refer to the positive relationships

with the aim of measuring the quality of the retrieval.

Concerning the efficiency assessment, we measure the

computation time in the prediction phase of the methods.

Since this metric depends on the computational capabili-

ties of the device used, all methods are run over the same

machine to avoid any possible bias. 2 Moreover, each ex-

periment is repeated 10 times, being the average process-

ing time the one reported as the efficiency score.

4.3 Neural architectures

Regarding the MLP architectures, we consider two imple-

mentations with a varying number of layers and weights

to balance the trade-off between efficiency and representa-

tional power:

• MLP64,512: A three-layered fully-connected net-

work comprising two hidden layers with 64 and 512,

respectively, with Rectifier Linear Unit (ReLU) acti-

vations and a single output unit to compute the score

of the binary classification.

• MLP32: A two-layered fully-connected network

comprising a 32-unit hidden layer and ReLu activa-

tion and a single unit as output.

Concerning the AsymK, φk1
, φk2

are implemented as

two different 4-layered MLP comprising 512, 1024, 512,

and 256 units, respectively, with ReLU activation. The

idea is to generate two 256-dimensional embeddings—two

points in different Hilbert spaces—to then compute the

similarity through the dot product.

In all cases, the last operation is implemented as a

sigmoid activation function to understand the output as a

probability of a positive relationship. This probability is

eventually thresholded considering a value of 0.5 to con-

vert it in an actual decision.

Regarding optimization, all models were trained for 200

epochs using the Adam optimizer [24] with a learning rate

of 10−3.

4.4 Feature description

As aforementioned, the music-object detection stage of an

OMR process retrieves, at least, the position (coordinates)

of the detected object in the image sheet together with its

2 The experiment was run over 8 cores of i7-7700K CPU at 4.20GHz
with 16 GB of RAM memory, with no explicit parallelization or GPU
speed-up.

estimated class label. For our relationship prediction ap-

proaches, we consider that each vertex (vi ∈ V ) is repre-

sented only by these features, being the inclusion of addi-

tional information left as future work.

Delving on the features considered, the spatial (posi-

tion) information is directly encoded using four normalized

values that denote the top-left and right-bottom corners of

the bounding box. Conversely, the class information is pro-

cessed by a 16-dimension learnable embedding layer to ob-

tain an adequate representation for the task. Therefore, ev-

ery single node is finally represented as a 20-dimensional

feature vector.

5. RESULTS

Having introduced the different neural proposals as well as

the experimental procedures, this section presents and dis-

cusses the results obtained. To establish a reference in the

effectiveness that can be obtained for this task, we include

the results of Pacha et al. [22], measured under the same

experimental conditions as the rest of the methods in the

work. 3

The rest of the section separately studies and analyzes

the two individual aspects considered, i.e., performance ef-

ficiency and the ability to retrieve syntactic relationships

between primitives.

5.1 Performance efficiency

Focusing first on the temporal aspect of the strategies,

Table 1 shows the per-page average execution time of

the contemplated notation assembly strategies. Note that,

since this evaluation disregards the correctness of the es-

timation but simply assesses its temporal cost, all experi-

ments are performed considering the ground-truth annota-

tions.

Table 1: Efficiency results in terms of the per-page abso-

lute execution time (in milliseconds) on the MUSCIMA++

corpus for the different notation assembly methods as-

sessed. Each value corresponds to the average execution

time obtained with 10 different iterations over all test sam-

ples.

AsymK MLP32 MLP64,512 CNN [22]

Execution

time (ms)
< 0.5 55 176 > 1.5 · 106

As can be observed, the existing CNN method [22]

proves to be the least efficient among the considered strate-

gies due to the large execution time it exhibits (roughly, 25

minutes per page). Such a point directly disables its possi-

ble integration in any practical system that comprises user

interaction.

3 All experiments have been run considering the Python language
(version 3.8), being the PyTorch (version 1.12.1) and PyTorch-lightning
frameworks (1.9.1) particularly contemplated for reproducing the archi-
tecture proposed in Pacha et al. [22].
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Oppositely, the different neural proposals presented in

the work remarkably outperform these low-efficiency fig-

ures, achieving execution times in the order of a few mil-

liseconds per page. More in detail, the AsymK stands as

the most efficient strategy of the proposed ones as it re-

ports figures several orders of magnitude faster than the

MLP32 and MLP64,512. Note that this is because AsymK

exploits the parallelization of the dot product operation and

the independent node processing while the two other pro-

posals require more computation because of the classifica-

tion framework they are based on.

It must be pointed out that the presented neural archi-

tectures depict execution times several orders of magnitude

faster than the reference state-of-the-art method. In this re-

gard, while the CNN strategy may be further optimized,

the difference with the AsymK case—the most efficient

strategy—must be considered as insurmountable.

5.2 Recognition capability

Let us now move to compare the estimation goodness of

the different notation assembly strategies. As aforemen-

tioned, these methods take as input the result from a given

framework that detects the primitives in the music score,

i.e., an object detection strategy.

Taking this into consideration, we will not consider any

existing object detection approach as starting point, since

other additional issues should be taken into account which

are outside the scope of this work—e.g., which object de-

tection strategy to use, what confidence level to actually

retrieve an object, or how to evaluate cases where a node is

missing or has been predicted with the wrong label. Note

that, since these questions are not related to the retrieval

of the relationships themselves, any decision in this regard

might bias the analysis of the models for the targeted nota-

tion assembly stage.

Nevertheless, to cover a greater number of possibil-

ities in an agnostic way to the considered music-object

detection step, we will simulate inaccuracies in the lo-

cation process of the nodes. Specifically, we will con-

sider a set of ranges for the Intersection over Union

(IoU) metric between the original objects—the ground-

truth annotations—and those generated for this experi-

ment. 4 For that, assuming that the MUSCIMA++ corpus

depict an IoU = 1 (ground-truth annotation), we will pro-

gressively perturb the location of the objects—i.e., altering

the coordinates of the bounding boxes—so that the over-

all IoU metric degrades to the range IoU ∈ [0.85, 0.95].
This range will decrease in steps of 0.1 (i.e., [0.75–0.85],

[0.65–0.75], ..., [0.05–0.15]) to simulate scenarios depict-

ing more limited symbol detection methods. In this way,

our study focuses on general advantages and limitations of

the notation assembly models, which can be then consid-

ered for developing more adequate pipelines for the previ-

ous stages. Figure 3 shows examples of how node loca-

tions are perturbed at some of the IoU levels considering

4 The IoU estimates the degree of overlap between two sets (in this
case, areas of two music-notation objects) as the ratio of their intersection
and their union.

the proposed strategy.

Considering this experimental set-up, Figure 4 shows

the recognition rates in terms of F1 achieved by the differ-

ent neural schemes contemplated with respect to increasing

IoU conditions (x-axis).

For the ideal scenario of perfect object-detection re-

trieval (IoU = 1), the reference CNN method [22] reports

the highest recognition rate among all the schemes, with a

value of F1 = 93.0%. However, the MLP64,512 proposal

shows slightly lower figures to the reference strategy—

F1 = 91.9%—thereby proving itself as a competitive al-

ternative to the CNN-based method in terms of accuracy.

In relation to the AsymK and MLP32 proposals, these two

strategies depict the least competitive results among the

ones studied. However, since the MLP32 case shows a

more competitive performance than the AsymK method,

the former may be deemed as an intermediate case among

the best-performing strategies—CNN and MLP64,512—

and the AsymK approach.

As the music-object detection becomes more realistic

(IoU < 1), the neural models (except for CNN, which

will be discussed below) do not degrade ostensibly but ex-

hibit certain robustness up to reasonable IoU cases (above

0.5). 5 Digging deeper into the curves, the most rele-

vant phenomenon is that, although at the higher ranges the

CNN approach maintains the best accuracy, it decays much

faster than the MLPs. Specifically, from IoU ∈ [0.75–

0.85], the MLP64,512 outperforms it in terms of F1, while

maintaining the clear advantage in efficiency reported in

the previous section. Furthermore, the rather shallow

MLP32 approach also outperforms the CNN from IoU ∈
[0.55–0.65], which are still likely values for music-object

detection. These results reflect the adequacy of the efficient

approaches proposed in this work, which are not only effi-

cient enough to be used in practice but also keep greater

robustness against very common distortions in previous

stages to that of notation assembly in the OMR pipeline.

In contrast, the AsymK shows a similar trend to the other

efficient approaches, so from the perspective of this exper-

iment it maintains the same advantages and disadvantages

already discussed above (even higher efficiency but very

poor retrieval).

As a last point, it must be noted that the results reported

in this work may be considered as a turning point for the

development of novel approaches to music-object detec-

tion in a complete OMR workflow. For example, using

the efficient approaches of this work, one can prioritize re-

trieving most of the objects at the cost of slightly losing

some location accuracy. An object that is not detected is

impossible to relate correctly, but if it is detected, even if

inaccurately it might connect successfully with other nodes

(see Fig. 4).

As a final note, the whole experiments clearly prove that

there is no single strategy capable of optimizing both con-

templated criteria at the same time: high recognition rates

imply large execution times (e.g., the CNN method [22],

5 While it is true that the models obtain very poor results for the lowest
ranges, this is not relevant in practice because 0.5 is the minimum IoU
threshold for most object detectors to consider a correct retrieval.
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(a) Simulated symbol detection performance of IoU ∈ [0.45− 0.55].

(b) Simulated symbol detection performance of IoU ∈ [0.85− 0.95].

Figure 3: Examples obtained with our proposal under different simulated symbol-detection scenarios based on the overall

IoU. The green and blue bounding boxes respectively denote the ground truth and the modified ones.
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Figure 4: Results in terms of the F1 metric for the com-

pared note assembly strategies for different object detec-

tion performance rates based on the IoU score.

which results impractical in real-world applications) while

faster strategies show more limited recognition rates (for

instance, the AsymK case). In this regard, the proposed

MLP-based architectures seem to provide an adequate bal-

ance between the two evaluation criteria, being particularly

relevant to the MLP64,512 one as it shows a remarkable

temporal efficiency with a slightly worse performance than

the highest attainable recognition results by the CNN case.

6. CONCLUSION

Optical Music Recognition (OMR) represents the re-

search field that studies how to computationally read mu-

sic notation from written documents. Generally, these

strategies comprise an initial phase in which the music-

notation elements from a given image are located—symbol

detection—followed by a notation assembly stage that esti-

mates the relations among these elements to reconstruct the

musical notation itself. However, while there exist a large

number of approaches that address the former process, the

latter one has been scarcely addressed in the related litera-

ture.

This work frames in this particular assembly stage.

Considering the high number of possible relationships in

a music score, this work proposes two neural architectures

to address this task in an efficient manner: (i) a strategy

based on a Multilayer Perceptron (MLP) scheme; and (ii)

a model based on asymmetric kernels. The results obtained

with the MUSCIMA++ benchmark corpus [23] show that

the MLP-based approach achieves recognition rates com-

parable to those of the reference strategy by Pacha et

al. [22] with considerably less computational cost. More-

over, the asymmetric kernel approach, while proven to be

extremely fast, exhibits a noticeable loss of accuracy with

respect to the highest attainable one. In addition, these re-

sults also prove MLP-based schemes as remarkably robust

when facing adverse symbol detection scenarios compared

to the state-of-the-art method.

Several avenues of future research are opened: on the

one hand, it would be important to estimate the relevance

of each error produced since it has not been yet studied

what errors—missing positive relationships or predicting

non-existing relationships—and what type of elements in-

volved cause the most impact on the eventual OMR sys-

tem. On the other hand, this work has considered the given

labeling of the MUSCIMA++; however, it has not been ex-

plored in depth whether this annotation scheme is actually

adequate for these learning algorithms. More consistent

or easy-to-learn annotations may be possible, as long as

the goal of correctly encoding music notation is still met.

Besides, just as the music-object detection step has been

integrated into a single process, it would be beneficial to

train end-to-end models that take into account both object

detection and notation assembly. In this way, the model

could leverage contextual and semantic information, pro-

vided by the notation assembly stage, when detecting ob-

jects that would be otherwise difficult or impossible. Fi-

nally, it would be also relevant to carry out user studies to

assess the usefulness of these efficient approaches in real-

world OMR scenarios.
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