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ABSTRACT

Taking long-term spectral and temporal dependencies into

account is essential for automatic piano transcription. This

is especially helpful when determining the precise onset

and offset for each note in the polyphonic piano content.

In this case, we may rely on the capability of self-attention

mechanism in Transformers to capture these long-term de-

pendencies in the frequency and time axes. In this work,

we propose hFT-Transformer, which is an automatic mu-

sic transcription method that uses a two-level hierarchical

frequency-time Transformer architecture. The first hier-

archy includes a convolutional block in the time axis, a

Transformer encoder in the frequency axis, and a Trans-

former decoder that converts the dimension in the fre-

quency axis. The output is then fed into the second hi-

erarchy which consists of another Transformer encoder in

the time axis. We evaluated our method with the widely

used MAPS and MAESTRO v3.0.0 datasets, and it demon-

strated state-of-the-art performance on all the F1-scores of

the metrics among Frame, Note, Note with Offset, and Note

with Offset and Velocity estimations.

1. INTRODUCTION

Automatic music transcription (AMT) is to convert music

signals into symbolic representations such as piano rolls,

Musical Instrument Digital Interface (MIDI), and musical

scores [1]. AMT is important for music information re-

trieval (MIR), its result is useful for symbolic music com-

position, chord progression recognition, score alignment,

etc. Following the conventional methods [1–15], we esti-

mate the frame-level metric and note-level metrics as fol-

lows: (1) Frame: the activation of quantized pitches in

each time-processing frame, (2) Note: the onset time of

each note, (3) Note with Offset: the onset and offset time

of each note, and (4) Note with Offset and Velocity: the

onset, offset time, and the loudness of each note.
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For automatic piano transcription, it is important to an-

alyze several harmonic structures that spread in a wide

range of frequencies, since piano excerpts are usually poly-

phonic. Convolutional neural network (CNN)-based meth-

ods have been used to aggregate harmonic structures as

acoustic features. Most conventional methods apply multi-

layer convolutional blocks to extend the receptive field in

the frequency axis. However, the blocks often include

pooling or striding to downsample the features in the fre-

quency axis. Such a downsampling process may reduce

the frequency resolution [6]. It is worth mentioning, many

of these methods use 2-D convolutions, which means the

convolution is simultaneously applied in the frequency and

time axes. The convolution in the time axis works as a pre-

emphasis filter to model the temporal changes of the input

signals.

Up to now, recurrent neural networks (RNNs), such as

gated recurrent unit (GRU) [16] and long short-term mem-

ory (LSTM) [17], are popular for analyzing the temporal

sequences of acoustic features. However, recently some of

the works start to use Transformer [18], which is a pow-

erful tool for analyzing sequences, in AMT tasks. Ou

et al. [2] applied a Transformer encoder along the time

axis and suggested that using Transformer improves ve-

locity estimation. Hawthorne et al. [3] used a Transformer

encoder-decoder as a sequence-to-sequence model for es-

timating a sequence of note events from another sequence

of input audio spectrograms. Their method outperformed

other methods using GRUs or LSTMs. Lu et al. [19] pro-

posed a method called SpecTNT to apply Transformer en-

coders in both frequency and time axes and reached state-

of-the-art performance for various MIR tasks such as mu-

sic tagging, vocal melody extraction, and chord recogni-

tion. This suggests that such a combination of encoders

helps in characterizing the broad-scale dependency in the

frequency and time axes. However, SpecTNT aggregates

spectral features into one token, and the process in its

temporal Transformer encoder is not independent in the

frequency axis. This inspires us to incorporate Trans-

former encoders in the frequency and time axes and make

the spectral information available for the temporal Trans-

former encoder.

In addition, we usually divide the input signal into

chunks since the entire sequence is often too long to be
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Figure 1. hFT-Transformer (N: number of frames in each processing chunk, M: length of margin, F: number of frequency

bins, P: number of pitches)

dealt at once. However, this raises a problem that the es-

timated onset and offset accuracy fluctuates depending on

the relative position in the processing chunk. In our obser-

vation, the accuracy tends to be worse at both ends of the

processing chunk. This motivates us to incorporate extra

techniques during the inference time to boost the perfor-

mance.

In summary, we propose hFT-Transformer, an auto-

matic piano transcription method that uses a two-level hi-

erarchical frequency-time Transformer architecture. Its

workflow is shown in Figure 1. The first hierarchy con-

sists of a one-dimensional (1-D) convolutional block in the

time axis, a Transformer encoder in the frequency axis, and

a Transformer decoder in the frequency axis. The second

hierarchy consists of another Transformer encoder in the

time axis. In particular, the Transformer decoder at the

end of the first hierarchy converts the dimension in the

frequency axis from the number of frequency bins to the

number of pitches (88 for piano). Regarding the issue of

the location dependent accuracy fluctuation in the process-

ing chunks, we propose a technique which halves the stride

length at inference time. It uses only the result of the cen-

tral part of processing chunks, which will improve overall

accuracy. Finally, in Section 4, we show that our method

outperforms other piano transcription methods in terms of

F1 scores for all the four metrics.

A PyTorch implementation of our method is available

here 1 .

2. RELATED WORK

Neural networks, such as CNNs, RNNs, generative adver-

sarial networks (GANs) [20], and Transformers have been

dominant for AMT. Since Sigtia et al. [4] proposed the

first method to use a CNN to tackle AMT, CNNs have

been widely used for the methods of analyzing the spec-

tral dependency of the input spectrogram [2, 6–10, 12–15].

However, it is difficult for CNNs to directly capture the

harmonic structure of the input sound in a wide range of

frequencies, as convolutions are used to capture features

in a local area. Wei et al. [5] proposed a method of us-

ing harmonic constant-Q transform (CQT) for capturing

the harmonic structure of piano sounds. They first ap-

plied a 3-Dimensional CQT, then applied multiple dilated

convolutions with different dilation rates to the output of

1 https://github.com/sony/hFT-Transformer

CQT. Because the dilation rates are designed to capture

the harmonics, the performance of Frame and Note accu-

racy reached state-of-the-art. However, the dilation rates

are designed specifically for piano. Thus, the method is

not easy to adapt to other instruments.

For analysis of time dependency, Kong et al. [6] pro-

posed a method that uses GRUs. Howthorner et al. [7],

Kwon et al. [8], Cheuk et al. [9], and Wei et al. [5] pro-

posed methods that use bi-directional LSTMs for analysis.

Ou et al. [2] used a Transformer encoder to replace the

GRUs in Kong et al.’s method [6], and showed the effec-

tiveness of the Transformer. Usually, the note onset and

offset are estimated in each frequency and time-processing

frame grid, then paired as a note for note-level transcrip-

tion by post-processing algorithms such as [6]. How-

ever, compared to heuristically designed algorithms, end-

to-end data-driven methods are often preferred. For exam-

ple, Keltz et al. [10] applied a seven-state hidden Markov

model (HMM) for the sequence of attack, decay, sustain,

and release to achieve note-level transcription. Kwon et

al. [8] proposed a method of characterizing the output of

LSTM as a five-state statement (onset, offset, re-onset, ac-

tivate, and inactivate). Hawthorne et al. [3] proposed a

method of estimating a sequence of note events, such as

note pitch, velocity, and time, from another sequence of

input audio spectrograms using a Transformer encoder-

decoder. This method performs well in multiple instru-

ments with the same model [11]. Yan et al. [12] proposed

a note-wise transcription method for estimating the interval

between onset and offset. This method shows state-of-the-

art performance in estimating Note with Offset and Note

with Offset and Velocity. However, the performance in es-

timating Frame and Note is worse than that of Wei et al.’s

method [5].

3. METHOD

3.1 Configuration

Our proposed method aims to transcribe N frames of the

input spectrogram into N frames of the output piano rolls

(frame, onset, offset, and velocity) as shown in Figure

1, where N is the number of frames in each processing

chunk. Each input frame is composed of a log-mel spec-

trogram having size (F , M + 1 + M ), where F is the

number of frequency bins, and M is the size of the for-

ward margin and that of the backward margin. To obtain
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Figure 2. Model architecture of hFT-Transformer

the log-mel spectrogram, we first downmix the input wave-

form into one channel and resample them to 16 kHz. Then,

the resampled waveform is transformed into a mel spectro-

gram with transforms.MelSpectrogram class in

the Torchaudio library [21]. For the transformation, we

use hann window, setting the window size as 2048, fast-

Fourier-transform size as 2048, F as 256, padding mode

as constant, and hop-size as 16 ms. The magnitude of the

mel spectrogram is then compressed with a log function.

3.2 Model Architecture and Loss Functions

The model architecture of our proposed method is shown

in Figure 2. We first apply a convolutional block to the

input log-mel spectrogram, the size of which is (B, N , F ,

M+1+M ) where B is the batch size. In the convolutional

block, we apply a 1-D convolution in the M + 1 + M

dimension. After this process, the data are embedded with

a linear module.

The embedded vector is then processed with the first

Transformer encoder in the frequency axis. The self-

attention is processed to analyze the dependency between

spectral features. The positional information is designated

as [0, 1, ..., F − 1]. These positional values are then em-

bedded with a trainable embedding. These are processed

in the frequency axis only, thus completely independent to

the time axis (N dimension).

Next, we convert the frequency dimension from F to

the number of pitches (P ). A Transformer decoder with

cross-attention is used as the converter. The Transformer

decoder calculates the cross-attention between the output

vectors of the first Transformer encoder and another train-

able positional embedding made from [0, 1, ..., P−1]. The

decoded vectors are then converted to the outputs of the

first hierarchy with a linear module and a sigmoid function

(hereafter, we call these outputs output_1st).

Regarding the loss calculation for the outputs, frame,

onset, and offset are calculated with binary cross-entropy,

and velocity is calculated with 128-category cross-entropy.

The losses can be summarized as the following equations:

L<m>
bce =

N−1∑

n=0

P−1∑

p=0

lbce(y
<m>
n,p , ŷ<m>

n,p ), (1)

Lvelocity
cce =

N−1∑

n=0

P−1∑

p=0

lcce(y
velocity
n,p , ŷvelocityn,p ), (2)

L = Lframe
bce + Lonset

bce + Loffset
bce + Lvelocity

cce , (3)

where < m > is the placeholder for each output (frame,

onset, and offset), lbce and lcce denote the loss function for

binary cross-entropy and categorical cross-entropy, respec-

tively, and y and ŷ denote the ground truth and predicted

values of each output (frame, onset, offset, and velocity),

respectively. Although it is intuitive to apply the mean

squared error (MSE) for velocity, we found that using the

categorical cross-entropy yields much better performance

than the MSE from a preliminary experiment.

Finally, the output of the converter is processed with

another Transformer encoder in the time axis. The self-

attention is used to analyze the temporal dependency of

features in each time-processing frame. A third positional

embedding made from [0, 1, ..., N −1] is used here. Then,

similar to the first hierarchy, the outputs of the second hier-

archy are obtained through a linear module and a sigmoid

function. We call these outputs of the second hierarchy as

output_2nd hereafter. The losses for the output_2nd are

evaluated in the same way as those for output_1st. These

losses are summed with the coefficients α1st and α2nd as

follows:

Lall = α1stL1st + α2ndL2nd. (4)

Although both outputs are used for computing losses dur-

ing training, only output_2nd is used in inference. As Chen

et al. [22] suggested that the performance of their method

of calculating multiple losses outperformed the method
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Figure 3. Estimation error (Eqn (5)) on location in each

time-processing frame

that uses single loss only, it hints us that utilizing both

output_1st and output_2nd in training has the potential to

achieve better performance.

3.3 Inference Stride

As mentioned in Section 1, chunk-based processing is re-

quired because the input length is limited due to system

limitations, such as memory size and acceptable process-

ing delay. We found that the estimation error tends to in-

crease at certain part within each processing chunk. This

can be demonstrated by evaluating the error for each in-

stance of time n within the chunks:

error
<m>
n =

1

IP

I−1∑

i=0

P−1∑

p=0

(y<m>
i,n,p − ŷ<m>

i,n,p )2, (5)

where < m > is the placeholder for each output (frame,

onset, offset, and velocity), and I is the number of pro-

cessing chunks over the test set. The result using our pro-

posed model trained using the MAESTRO training set (de-

scribed in Section 4) is shown in Figure 3. Here, the error

error
<m>
n is calculated using the MAESTRO test set. In

the figure, we observe a monotonic decrease for frame and

a similar but much weaker trend for onset and offset. How-

ever, for velocity, no such trend can be observed. This hints

us to use only the middle portion of a processing chunk as

the output to reduce the error rate. We call this as the half-

stride strategy, since a 50% overlap is required for process-

ing chunks, as shown in Figure 4 (B).

4. EXPERIMENTS

4.1 Datasets

We use two well-known piano datasets for the evaluation.

The MAPS dataset [23] consists of CD-quality recordings

and corresponding annotations of isolated notes, chords,

and complete piano pieces. We use the full musical

pieces and the train/validation/test split as stated in [4, 7].

The number of recordings and the total duration in hours

in each split are 139/71/60 and 8.3/4.4/5.5, respectively.

The MAESTRO v3.0.0 dataset [13] includes about 200

hours of paired audio and MIDI recordings from ten years

of the International Piano-e-Competition. We used the

(A) Full stride

(B) Half stride

N N

N N

N

N
N

N

N/4N/4 N/2

N/4 N/2 N/4

N/4N/4 N/2

N/4N/4 N/2

Figure 4. Inference stride: (A) full stride, (B) half stride

train/validation/test split configuration as provided. In

each split, the number of recordings and total duration in

hours are 962/137/177 and 159.2/19.4/20.0, respectively.

For both datasets, the MIDI data have been collected by

Yamaha Disklaviers concert-quality acoustic grand pianos

integrated with a high-precision MIDI capture and play-

back system.

4.2 Model Configuration

Regarding our model architecture depicted in Figure 2, we

set N as 128, M as 32, F as 256, P as 88, the CNN chan-

nels (C) as 4, size of the CNN kernel (K) as 5, and embed-

ding vector size (Z) as 256. For the Transformers, we set

the feed-forward network vector size as 512, the number

of heads as 4, and the number of layers as 3. For training,

we used the following settings: a batch size of 8, learn-

ing rate of 0.0001 with Adam optimizer [24], dropout rate

of 0.1, and clip norm of 1.0. ReduceLROnPlateu in

PyTorch is used for learning rate scheduling with default

parameters. We set α1st and α2nd as 1.0, which were de-

rived from a preliminary experiment (see Section 4.6).

We trained our models for 50 epochs on MAPS dataset

and 20 epochs for MAESTRO dataset using one NVIDIA

A100 GPU. It took roughly 140 minutes and 43.5 hours to

train one epoch with our model for MAPS and MAESTRO,

respectively. The best model is determined by choosing the

one with the highest F1 score in the validation stage.

In order to obtain high-resolution ground truth for onset

and offset, we followed the method in Kong et al. [6]. We

set J , the hyper-parameter to control the sharpness of the

targets, to 3. Also, the label of velocity is set only when an

onset is present. We set the threshold as 0.5, which means

if the onset is smaller than 0.5, the velocity is set as 0.

4.3 Inference

At inference time, we use output_2nd as the final output.

We set the threshold for frame as 0.5. For note-wise events

(onset, offset, and velocity), the outputs in each pitch-frame

grid are converted to a set containing note-wise onset, off-

set, and velocity following Kong et al.’s Algorithm 1 [6] in

five steps shown below:

Step 1. onset detection: find a local maximum in onset

with a value at least 0.5. Then calculate the precise onset

time using the values of the adjacent three frames [6].

Step 2. velocity: If an onset is detected in Step 1, extract

the velocity value at the frame. If the value is zero, then
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Method
half

Params
Frame Note Note w/ Offset Note w/ Offset&Velocity

stride P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Onsets&Frames [7] 26M 88.53 70.89 78.30 84.24 80.67 82.29 51.32 49.31 50.22 35.52 30.80 35.59
ADSR [10] 0.3M 90.73 67.85 77.16 90.15 74.78 81.38 61.93 51.66 56.08 - - -

hFT-Transformer 5.5M 83.36 82.00 82.67 86.63 83.75 85.07 67.18 65.06 66.03 48.75 47.21 47.92
hFT-Transformer ✓ 5.5M 83.68 82.11 82.89 86.72 83.81 85.14 67.51 65.36 66.34 49.05 47.48 48.20

Table 1. Evaluation results on MAPS test dataset (P: precision, R: recall, bold: best score, underline: second best score)

Method
half

Params
Frame Note Note w/ Offset Note w/ Offset&Velocity

stride P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Seq2Seq [3] 54M - - - - - 96.01 - - 83.94 - - 82.75
HPT-T [2] - - - 90.09 97.88 96.72 96.77 84.13 82.31 83.20 82.85 81.07 81.90

Semi-CRFs [12] 9M 93.79 88.36 90.75 98.69 93.96 96.11 90.79 86.46 88.42 89.78 85.51 87.44
HPPNet-sp [5] 1.2M 92.79 93.59 93.15 98.45 95.95 97.18 84.88 82.76 83.80 83.29 81.24 82.24

hFT-Transformer 5.5M 92.62 93.43 93.02 99.62 95.41 97.43 92.32 88.48 90.32 91.21 87.44 89.25
hFT-Transformer ✓ 5.5M 92.82 93.66 93.24 99.64 95.44 97.44 92.52 88.69 90.53 91.43 87.67 89.48

Table 2. Evaluation results on MAESTRO v3.0.0 test dataset

②61

③4.043

④4.064

①4.003

0 0 61 61 61 0 0 0 0 0velocity

0.00 0.29 0.65 0.93 0.75 0.40 0.05 0.00 0.00 0.00onset

0.00 0.00 0.01 0.11 0.51 0.80 0.86 0.70 0.31 0.25offset

0.00 0.00 0.01 0.97 1.00 1.00 0.75 0.20 0.01 0.00frame

3.952 3.968 3.984 4.000 4.016 4.032 4.048 4.064 4.080 4.096time [sec]

{onset: 4.003, offset: 4.043, velocity: 61}

Figure 5. Example of conversion from grid-wise values to

note-wise values

discard both onset and velocity at this frame.

Step 3. offset detection with offset: find a local maxi-

mum in offset with a value at least 0.5. Then calculate the

precise offset time using the values of the adjacent three

frames [6].

Step 4. offset detection with frame: choose the frame

that is nearest to the detected onset which has a frame value

below 0.5.

Step 5. offset decision: choose the smaller value between

the results of Step 3 and 4.

An example is shown in Figure 5. The onset is 4.003,

and the velocity is 61. For offset, the direct estimation from

offset is 4.043, and that estimated via frame is 4.064. Thus,

we choose 4.043 as offset. Finally, we obtain a note with

{onset: 4.003, offset: 4.043, velocity: 61} in the output.

4.4 Metrics

We evaluate the performance of our proposed method with

frame-level metrics (Frame) and note-level metrics (Note,

Note with Offset, and Note with Offset & Velocity) with the

standard precision, recall, and F1 scores. We calculated

these scores using mir_eval library [25] with its default

settings. The scores were calculated per recording, and the

mean of these per-recording scores was presented as the

final metric for a given collection of pieces, as explained

in Hawthorne et al. [7].

4.5 Results

Tables 1 and 2 show the scores on the test sets of

MAPS and MAESTRO datasets. The numbers of pa-

rameters in these Tables are referred from [5, 10]. For

the MAPS dataset, our proposed method outperformed

the other methods in F1 score for all metrics. For the

MAESTRO dataset, our proposed method outperformed

the other methods in F1 score for Note, Note with Off-

set, and Note with Offset & Velocity. Furthermore, our

method with the half-stride strategy which is mentioned in

3.3 outperformed other methods in all metrics. In contrast,

the two state-of-the-art methods for MAESTRO, which are

Semi-CRFs [12] and HPPNet-sp [5], performed well only

on a subset of the metrics.

The results suggest that the proposed two-level hierar-

chical frequency-time Transformer structure is promising

for AMT.

4.6 Ablation Study

To investigate the effectiveness of each module in our pro-

posed method, we trained various combinations of those

modules using the MAPS training set and evaluated them

using the MAPS validation set. The variations are shown

in Table 3. In this study, we call our proposed method

1-F-D-T, which means it consists of the 1-D convolution

block, the first Transformer encoder in the Frequency axis,

the Transformer Decoder, and the second Transformer en-

coder in the Time axis. Table 4 shows evaluation results

for each variation.

Second Transformer encoder in time axis. To verify

the effectiveness of the second Transformer encoder, we

compared the 1-F-D-T and the model without the second

Transformer encoder (1-F-D-N). For the 1-F-D-N model,

we use output_1st in both training and inference stages as

the final output. The result indicates that the second Trans-

former encoder improved Note with Offset performance, in
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Model
1st-Hierarchy 2nd-Hierarchy

Output
Convolutional block 1st Transformer encoder Converter 2nd Transformer encoder

1-F-D-T† 1-D (time axis) Frequency axis Transformer Decoder Time axis output_2nd
1-F-D-N 1-D (time axis) Frequency axis Transformer Decoder n/a output_1st
2-F-D-T 2-D Frequency axis Transformer Decoder Time axis output_2nd
1-F-L-T 1-D (time axis) Frequency axis Linear Time axis output_2nd

Table 3. Model variations for ablation study (†: the proposed method, hFT-Transformer)

Model Params
Frame Note Note w/ Offset Note w/ Offset&Velocity

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

1-F-D-T† 5.5M 93.61 88.71 91.09 98.81 94.81 96.72 86.18 82.81 84.42 77.47 74.55 75.95
1-F-D-N 3.9M 92.85 87.49 90.09 99.01 93.24 95.95 82.67 78.06 80.23 73.89 69.90 71.78
2-F-D-T 6.1M 75.49 61.08 67.52 97.03 19.68 31.10 64.07 13.28 20.88 42.11 8.57 13.50
1-F-L-T 3.4M 93.71 88.42 90.99 99.11 92.90 95.79 85.77 80.56 82.98 71.66 67.32 69.34

Table 4. Evaluation results of ablation study on MAPS validation dataset

which the F1 score is 84.42 for 1-F-D-T and 80.23 for 1-

F-D-N. This shows the effectiveness of the second Trans-

former encoder as it provides an extra pass to model the

temporal dependency of acoustic features, which is pre-

sumably helpful in offset estimation.

Compelxity of convolutional block. To investigate

how the complexity of the convolutional block affects the

AMT performance, we compared the 1-F-D-T model and

the model that replaces the 1-D convolutional block with

a 2-D convolutional block (2-F-D-T). Surprisingly, the re-

sult shows that the performance of the 2-F-D-T model is

significantly worse than that of the 1-F-D-T model. This is

probably because the two modules working on the spectral

dependency do not cohere with each other. The 2-D convo-

lutional block may over aggregate the spectral information

thus resulting into an effectively lower frequency resolu-

tion. Then, the Transformer encoder can only evaluate the

spectral dependency over an over-simplified feature space,

causing the performance degradation.

Converter. We used a Transformer decoder to convert

the dimension in the frequency axis from F to P . In con-

trast, almost all of the existing methods used a linear mod-

ule to achieve this. We compared the performance of the

1-F-D-T model to a model with the Transfomer decoder

replaced with a linear converter (1-F-L-T). The result in-

dicates that the 1-F-D-T model outperformed the 1-F-L-T

model in F1 score for all four metrics. Especially, the dif-

ference in Note with Offset and Velocity is large (75.95 for

the 1-F-D-T model and 69.34 for the 1-F-L-T model in

F1 score). This suggests that using a Transformer decoder

as converter is an effective way of improving the perfor-

mance, although the side effect is the increase of model

size.

We also investigated how the coefficients for the loss

functions, α1st and α2nd in Eqn (4), affect the perfor-

mance. We investigated six pairs of coefficients of loss

functions (α1st, α2nd) in Eqn (4), i.e., (1.8, 0.2), (1.4, 0.6),

(1.0, 1.0), (0.6, 1.4), (0.2, 1.8), and (0.0, 2.0), for the 1-F-

D-T model. Figure 6 shows the F1 scores of frame, onset,

offset, and velocity evaluated on the MAPS validation set

in each epoch. These results indicate that the (1.0, 1.0) pair

10 20 30 40 50
epoch

0.85

0.90

F1

Frame

(1.8,0.2)
(1.4,0.6)
(1.0,1.0)
(0.6,1.4)
(0.2,1.8)
(0.0,2.0)

10 20 30 40 50
epoch

0.85

0.90

0.95

F1
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(1.8,0.2)
(1.4,0.6)
(1.0,1.0)
(0.6,1.4)
(0.2,1.8)
(0.0,2.0)
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0.75
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(0.0,2.0)
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(0.2,1.8)
(0.0,2.0)

Figure 6. Performance of 1-F-D-T model trained with six-

pairs of coefficients of loss functions

yields the best score. It also shows that the training con-

verges faster when α1st is larger than α2nd. Importantly,

if we omit the output_1st, which is the case when training

with the pair (0.0, 2.0), the training loss did not decrease

much. Therefore, the F1 score stays around 0% and thus

cannot be seen in Figure 6. This suggests that it is cru-

cial to use both losses, output_1st and output_2nd in our

proposed method.

5. CONCLUSION

In this work, we proposed hFT-Transformer, an automatic

piano transcription method that uses a two-level hierarchi-

cal frequency-time Transformer architecture. The first hi-

erarchy consists of a 1-D convolutional block in the time

axis, a Transformer encoder and a Transformer decoder in

the frequency axis, and the second hierarchy consists of a

Transformer encoder in the time axis. The experiment re-

sult based on two well-known piano datasets, MAPS and

MAESTRO, revealed that our two-level hierarchical archi-

tecture works effectively and outperformed other state-of-

the-art methods in F1 score for frame-level and note-level

transcription metrics. For future work, we would like to ex-

tend our method to other instruments and multi-instrument

settings.
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