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ABSTRACT

We propose Polyffusion, a diffusion model that generates

polyphonic music scores by regarding music as image-

like piano roll representations. The model is capable of

controllable music generation with two paradigms: inter-

nal control and external control. Internal control refers to

the process in which users pre-define a part of the music

and then let the model infill the rest, similar to the task

of masked music generation (or music inpainting). Ex-

ternal control conditions the model with external yet re-

lated information, such as chord, texture, or other features,

via the cross-attention mechanism. We show that by us-

ing internal and external controls, Polyffusion unifies a

wide range of music creation tasks, including melody gen-

eration given accompaniment, accompaniment generation

given melody, arbitrary music segment inpainting, and mu-

sic arrangement given chords or textures. Experimental re-

sults show that our model significantly outperforms exist-

ing Transformer and sampling-based baselines, and using

pre-trained disentangled representations as external condi-

tions yields more effective controls. 1

1. INTRODUCTION

Diffusion models [1, 2], as a new class of generative mod-

els, have been successful in generating high-quality sam-

ples of image data and beyond. They achieve state-of-the-

art sample quality on a number of image generation bench-

marks [3, 4], and also show strong results for the genera-

tion of various media such as audio [5,6], video [7–9], and

text [10, 11].

Symbolic music generation, a task very different from

audio generation, has highly discrete outputs and is of-

ten described in terms of constraint optimization problems

[12, 13]. Despite the improvement of deep music genera-

1 Demo page: https://polyffusion.github.io/. Code
repository: https://github.com/aik2mlj/polyffusion
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Figure 1: The forward and reverse process of the proposed dif-
fusion model trained on piano roll representations. The red dot at
the front of each note denotes its onset; the green bar following
it denotes its sustain. Notice that the image axes are swapped for
proper visualization.

tive modeling [14,15], symbolic music generation still suf-

fers from the lack of controllability and consistency at dif-

ferent time scales [16]. In our study, we experiment with

the idea of using diffusion models to approach controllable

symbolic music generation.

Inspired by the high-quality and controllable image

generation that diffusion models have achieved in com-

puter vision, we devise an image-like piano roll format as

the input, and used a UNet-based diffusion model to step-

wise denoise a randomly sampled piano roll, as illustrated

in Figure 1. We show in our experiments and demos that

our design provides excellent generation results.

Besides unconditional generation, the model also ac-

cepts two categories of controls, namely internal control

and external control:

• Internal Control (Inpainting): By masking out part of

the given piano roll, we can specify the remaining area to

be generated, thus implicitly conditioning the generation

to fit in the masked part. We regard this strategy as a

generalized music inpainting method.

• External Control (Conditional Generation): By

adopting the cross-attention mechanism of Latent Dif-

fusion [17], we can explicitly control the music genera-

tion on given external conditions such as chords and tex-

tures. They are first encoded into latent representations

using pre-trained, disentangled variational autoencoders

(VAEs), and then fed into the backbone UNet of the dif-

fusion model to condition the denoising process. We

show that the generated music complies with the given

conditions well. We also add classifier-free guidance to

control the variance of the generation.
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These controls of diffusion models enable us to unify a

wide spectrum of creative music tasks that previously re-

quire separate modeling and training. In this paper, we

showcase the following scenarios:

• Melody generation given accompaniment by genera-

tion with the accompaniment part being masked out.

• Accompaniment generation given melody by genera-

tion with the melody part being masked out.

• Arbitrary music segment inpainting by generation

with any time segments being masked out.

• General music arrangement given chords or textures

by conditioning on external chord or texture signals.

2. RELATED WORK

We review three realms of related work: 1) music inpaint-

ing, which is related to our internal control method, 2)

conditioned music generation with external signals, which

is related to our external control method, and 3) recent

progress on diffusion-based modeling in the music domain.

2.1 Music Inpainting

Music inpainting is a controlled music generation task

that regulates the generation with pre-defined musical con-

texts. We see various studies on polyphonic music in-

painting. For example, DeepBach [18] develops a context-

aware recurrent neural network (RNN) capable of inpaint-

ing missing notes for chorales in the style of Bach. Co-

conet [19] uses blocked Gibbs sampling to repeatedly

rewrite a masked music score. Chang et al. [20] achieve

variable-length music score inpainting. Music Sketch-

Net [21] and MusIAC [22] introduce various controls to the

inpainting task under VAE-based and Transformer-based

framework respectively. Comparatively, diffusion models

naturally possess the inpainting ability via masked genera-

tion [23], and there is no need to train or fine-tune a task-

specific model for inpainting.

Though the current inpainting tasks mostly apply masks

over a continuous period of time, the inpainted area, in

theory, can be any note in the score (any area of a piano

roll). In this study, we show that our image-like repre-

sentation enables both part-wise and time-wise inpainting.

The former refers to inpainting melody or accompaniment

part given the other part, while the latter refers to infilling

notes falling in arbitrary time segments.

2.2 Music Generation Conditioned on External

Signals

External control signals are also one of the mainstream

methods to control the music generation process. Com-

mon scenarios include generating music given chords [18,

24–26], lyrics [27], and other relevant features such as note

density and voicing numbers [28].

Our study focuses on polyphonic score generation con-

trolled by external chords and textures. In particular, the

Figure 2: The model structure with an additional condition mod-
ule for external control. Each UNet unit ϵθ applies one denoising
step during the reverse process. External condition signals are
encoded by pre-trained encoders and fed into the cross-attention
layers, which are represented by the yellow squares in the UNet
unit.

“control by texture” task has great practical value in both

music arrangement and composition style transfer [29],

while very few existing models could realize this function.

2.3 Diffusion Models for Music Generation

Recently, we have seen several attempts to introduce dif-

fusion models to symbolic music tasks. Mittal et al. [30]

generate monophonic music by training a diffusion model

on the latent representations learned by MusicVAE [31].

Cheuk et al. [32] brings diffusion models to the music tran-

scription task by adapting the piano roll format into the

DiffWave [5] structure. It is relevant to our study as the

model can also output piano rolls. However, the model fo-

cuses on transcription instead of generation by relying on

a ground-truth spectrogram as its control. In general, for

symbolic music generation, conditioning diffusion models

on external controls is still an area to be explored.

3. METHODS

3.1 Data Representation

Our image-like piano roll representation is a 2-channel bi-

nary tensor x ∈ R
2×T×P . The generation task targets 8-

bar (32-beat) long music segments, with 1/4 beat as the

time step, resulting in T = 128 time steps per sample. We

use a MIDI pitch range 0...127, resulting in P = 128 pitch

bins. Each entry x(c, t, p) represents whether there is a

note onset (for c = 0) or sustain (for c = 1) at time step t

and MIDI pitch p.

3.2 Diffusion Model

Diffusion models [1, 2] are latent-variable models com-

prised of a forward (diffusion) process which gradually

disrupts the structure of data x0 and a reverse (denoising)

process that learns to recover the original data x0 from the

noisy input. In our study, x0 denotes the clean piano roll.

The forward process iteratively adds Gaussian noise in N

diffusion steps:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

q(x1:N |x0) =
N
∏

t=1

q(xt|xt−1) (2)
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where β1, β2, . . . , βN are a series of variance scheduling

parameters. The reverse process requires the model to pa-

rameterize a Markov chain that iteratively reconstructs the

piano roll x0 from a corrupted input xN ∼ N (0, I).

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)) (3)

pθ(x0:N ) = p(xN )
N
∏

t=1

pθ(xt−1|xt) (4)

During training, we optimize the model parameters ϵθ
by minimizing the following target:

L(θ) = Ex0,ϵ,t

[

∥

∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)
∥

∥

2
]

(5)

where t is uniformly sampled from [1, N ] and ϵ ∼ N (0, I),
αt := 1 − βt, ᾱt :=

∏t

s=1
αs. As shown in Figure 2, our

unconditional model structure is based on [2], an image-

oriented diffusion model using a 2-D UNet as its backbone

ϵθ.

3.3 Internal Control (Inpainting)

Internal control refers to the use of the music notes them-

selves to regulate and influence the generation process, and

we regard music inpainting as a means of internal control.

Specifically, we denote the given piano roll sample as s

and the mask as m. At each step t during inference sam-

pling, the fixed area of the image is diffused with the for-

ward process q(st|s) = N (st;
√
ᾱts, (1 − ᾱt)I) and put

together with the denoising sample st−1. Algorithm 1 [23]

shows the detailed implementation of this inpainting pro-

cess.

Algorithm 1 Inpainting Process

Input: inpainting mask m, original sample s, xN ∼
N (0, I)

1: for t = N, . . . , 1 do

2: ϵ1, ϵ2 ∼ N (0, I) if t > 1, else ϵ1 = ϵ2 = 0
3: y =

√
ᾱts+

√
1− ᾱtϵ1 if t > 1, else s

4: xt−1 = µθ(xt, t) + σθ(xt, t)ϵ2
5: xt−1 = xt−1 ⊙ (1−m) + y ⊙m

6: end for

7: return x0

3.4 External Control (Conditional Generation)

External control means using external signals to condition

the generation process. We aim to incorporate a general

strategy that does not place strong assumptions on the for-

mat of input control signals. To this end, we use the cross-

attention mechanism [33] for conditional generation intro-

duced by Latent Diffusion [17] since it is insensitive to the

dimension of the condition signals. We also adopted the

strategy used by Rombach et al. [17], which augments the

backbone UNet structure with cross-attention layers that

map condition signals into the UNet intermediate latent

representations.

Formally, to preprocess the external musical signal c,

we introduce a corresponding encoder τ that projects c to a

latent representation τ(c). The encoder τ is pre-trained and

fixed during diffusion model training. The cross-attention

layers then map τ(c) to the intermediate layers of the UNet

(as shown in Figure 2). The conditional training objective

is

Lcond(θ) := Ex0,c,ϵ,t

[

∥

∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t, τ(c)

)∥

∥

2
]

(6)

We use classifier-free guidance (CFG) [34] to enable

both conditioned and unconditioned generation by control-

ling the intensity of the condition signals during sampling.

We refer readers to [34] and [35] for details on CFG.

4. CONTROLLABLE MUSIC GENERATION

In this section, we present four general musical applica-

tions our model empowers with internal and external con-

trols: 1) melody generation given accompaniment, 2) ac-

companiment generation given melody, 3) arbitrary mu-

sic segment inpainting, and 4) music arrangement given

chords or textures. For each application, we provide non-

cherry-picked generated samples as a case study. We also

refer readers to our demo page for more examples.

4.1 Melody Generation Given Accompaniment

This task is achieved by internal control — to pre-define

the accompaniment part and let the model infill the up-

per melody. Figure 3(a) shows an example of pop song

melody generation given the accompaniment. We see that

the melody is consistent with the underlying chords of the

given accompaniment, and maintains an overall consistent

rhythmic pattern, except for a 16th-note jump at the begin-

ning of the 3rd bar.

4.2 Accompaniment Generation Given Melody

Similarly, given a lead melody, we can inpaint its corre-

sponding lower accompaniment. Figure 3(b) shows an ex-

ample, in which we see that the generated chord sequence

suits the key (E minor) of the melody well, realized by a

consistent arpeggio texture. The generated counter-melody

also fills in the gaps between melody onsets well.

4.3 Arbitrary Music Segment Inpainting

The common scenario of music inpainting, also called mu-

sic infilling [20], is to generate a music segment that fills

in the gap between given past and future contexts. For our

model, this task can be fulfilled by masking out the full

pitch range of selected bars for inpainting.

Figure 3(c) shows an example of the inpainting process

of the 3rd, 4th, 5th, and 7th bars, given the rest as fixed

contexts. In the example, the model is capable of generat-

ing a full cadence connecting the 7th and the 8th bar, and

also a nice applied chord in the non-diatonic progression

Gm-Adim-BZm connecting the 5th and the 6th bar.

We also extend the problem setup and let the diffusion

model generate long-term music by iteratively inpainting
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(a) An example of melody generation given accompaniment.
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(b) An example of accompaniment generation given melody.
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(c) An example of arbitrary segment inpainting.
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(d) An example of iterative inpainting for long-term music generation.
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(e) An example of chord-conditioned generation. Chords (annotated above) are used as external condition signals.
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(f) An example of texture-conditioned melody generation. The texture of a given melody (the staff above) is used as external condition signals.

Figure 3: Generated samples in various tasks of controllable music generation. The generated parts are marked in blue. These examples
have corresponding hearable demos on the demo page.

the future given the past. Figure 3(d) shows an example of

a 24-bar generation based on a 4-bar prompt. The model

generates 4 bars during each inference and finishes the pro-

cess with five iterations. We see that the generated music

contains a smooth chord progress, with a key modulation

towards the end. The long-term textural structure is coher-

ent, however lacking a consistent music theme.

4.4 Music Arrangement Given Chords or Textures

Inspired by the chord-texture disentanglement work [13,

29], we choose these two factors as the external condition

signals for polyphonic generation. In our context, chords

refer to the harmonic information, and textures refer to the

rhythmic information. The latent chords and textures are

encoded using pre-trained VAEs and cross-attended with

the backbone UNet.

Beat-wise chords are first extracted by rule-based meth-

ods [36, 37], in which we adopted a 36-D chord represen-

tation consisting of a 12-D one-hot root encoding, a 12-D

one-hot bass encoding and 12-D multi-hot chroma encod-

ing. We then use a chord VAE [13] to extract a 512-D

representation for each 8-bar chord sequence. For texture

conditioning, we encode each 2-bar segment with the pre-

trained texture encoder in [13] and then concatenate four

encoded 256-D representations into a 1024-D vector as an

8-bar texture representation.

Figure 3(e) demonstrates an example of polyphonic mu-

sic generation conditioned on chords. In the example, the

accompaniment and the melody are mostly chord notes,

with a certain degree of non-chord passing and neighbor-

ing tones that increase the interestingness of the song.

To show the complex combinations of conditions that

the model can handle, we showcase a “texture-specified

melody generation” for a given accompaniment segment

as an example of the combination of internal and external
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controls. As shown in Figure 3(f), We generate the melody

part of a given accompaniment segment conditioned on

the encoded texture representations of a given melody line.

The result preserves a similar rhythmic pattern and fits the

tonality of the new accompaniment.

5. EXPERIMENTS

5.1 Dataset and Training

We train our model using the POP909 dataset [38], a pop

song dataset containing around 1K MIDI files. We only

keep the pieces with 2/4 and 4/4 meters and cut them into

8-bar music segments with 1-bar hopping size, which re-

sults in 64K samples in total. The dataset is randomly split

into the training set (90%) and validation set (10%) on a

song level. The training samples are randomly transposed

to all 12 keys for data augmentation.

The classifier-free guidance technique stated in Sec-

tion 3.4 combines unconditional and conditional train-

ing. We adopt the implementation of DDPM and cross-

attention layers in [39]. With 1K total diffusion steps, the

model converges around 50 epochs (200K steps) on Adam

Optimizer [40] with a constant learning rate 5e-5.

To turn the generated 2-channel piano roll representa-

tions into MIDI files, we round them to {0, 1} and neglect

notes without an onset. In practice, the generation process

of 160 8-bar samples report zero invalid notes.

5.2 Evaluation

To validate the generation quality and control effectiveness

of our model, we conducted both objective and subjec-

tive evaluations on 5 tasks: (1) unconditional generation,

(2) accompaniment generation, (3) segment inpainting, (4)

chord-conditioned generation, and (5) texture-conditioned

generation. Tasks 2-3 focus on the evaluation of internal

controls, and tasks 4-5 focus on external controls. Table 1

summarizes the evaluation method for each task.

5.2.1 Evaluation Metrics

Objective metrics: To objectively measure the music

quality for all 5 tasks, we use the averaging overlapped

area of pitch distribution (DP) and duration distribution

(DD) from [41], which measure the distribution similarity

of pitch and duration between the generated samples and

ground truth. Additionally, we introduce chord distance

(CD) [41] and onset distance (OD) to evaluate the efficacy

of external control. These metrics measure the ℓ2 distance

of chord (for task 4) and onset distribution (for task 5) be-

tween the generated samples and the chord/texture condi-

tion.

Subjective metrics: Subjective metrics include creativ-

ity (C), naturalness (N), and musicality (M), which provide

a perceptive evaluation complementing the objective musi-

cal quality metrics. To demonstrate the efficacy of internal

control, we pick accompaniment generation as an exam-

ple and add a fitness (F) metric to evaluate how well the

generated parts fit in with the given melody.

5.2.2 Baseline models

We use two types of models as our baselines:

Transformer models: As suggested in the polyphonic

representation disentanglement study [13], applying a

Transformer on disentangled latent codes yields better re-

sults than raw token predictions. Following [13], we train

a Transformer to predict the chord and texture representa-

tions from melody representations. For unconditional gen-

eration (task 1), we sample the latent spaces of the first

2-bar melody and then predict its accompaniment and the

following content. For accompaniment generation (task 2)

and external conditioning (tasks 4-5), the melody (task 2),

chord (task 4), or texture (task 5) latent representation is

directly encoded as the condition for the Transformer. We

adopt the XLNet-based model proposed in [20] for the mu-

sic segment inpainting task (task 3).

Sampling-based models: We adopt the VAE-based dis-

entanglement model in [13] and generate music segments

by sampling the latent spaces. For unconditional genera-

tion (task 1), we sample from the chord and texture latent

spaces of the first and the last 2 bars, then linearly inter-

polate the middle latent codes to form a coherent 8-bar

segment. For inpainting (task 3), we also use linear in-

terpolation on latent codes to infill the missing bars. For

external conditioning (tasks 4-5), the chord (task 4) or tex-

ture (task 5) latent component is directly encoded from the

given condition.

5.3 Comparative Results

We calculate the average of each objective metric on

160 generated samples for each task. As shown in Ta-

ble 2, Polyffusion and its variations achieve the high-

est objective scores in tasks 1-4. For controllability, our

model yields competitive results on segment inpainting and

chord-conditioned generation. For the texture-conditioned

generation task, our model does not perform as well as the

baseline but is capable of preserving the general musical

texture, since the baseline model is explicitly trained on

texture reconstruction targets, while the texture condition

of our model only serves as a hint for the generation.

We also show the effectiveness of classifier-free guid-

ance in Table 2. With a guidance scale of 5, the model

(Polyffusion-S5) shows improved controllability on both

chord conditioning and texture conditioning. Notably,

a large guidance scale for chord conditions negatively

impacts the DD metric. We speculate that this is be-

cause notes regular in length provide clearer chord context,

which can be noticed in the guidance demos.

For subjective evaluation, we invite participants to rate

the generation quality via a double-blind online survey.

Our survey consists of 4 groups of samples of uncondi-

tional generation and accompaniment generation, respec-

tively. Each group contains a ground-truth piece, gener-

ated samples by Polyffusion and all baselines with random

orders. 36 participants completed our survey. Each par-

ticipant rated 4 random groups on average based on a 5-

point scale. The evaluation results are shown in Figure 4

and 5. The height of each bar represents the mean rating,
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(1) Uncond. Gen. (2) Acc. Gen. (3) Seg. Inp. (4) Chord Cond. (5) Texture Cond.

Objective Metrics DP, DD DP, DD DP, DD DP, DD, CD DP, DD, OD

Subjective Metrics C, N, M C, N, M, F N/A N/A N/A

Generative Length 8 bars 8 bars 4 bars 8 bars 8 bars

Transformer Baselines Wang Wang Chang Wang Wang

Sampling Baselines Wang N/A Wang Wang Wang

Table 1: Specifications of the evaluation tasks and the baseline models. C, N, M, F in subjective metrics mean creativity, naturalness,
musicality, and fitness respectively. Wang refers to the Transformer models (for Transformer baselines) and VAE-based models (for
sampling baselines) in [13]; Chang refers to the XLNet-based model in [20].

Uncond. Gen. Acc. Gen. Seg. Inp. Chord Cond. Texture Cond.

DP ↑ DD ↑ DP ↑ DD ↑ DP ↑ DD ↑ DP ↑ DD ↑ CD ↓ DP ↑ DD ↑ OD ↓
Polyffusion 0.89 0.93 0.89 0.96 0.90 0.93 0.90 0.96 0.75 0.88 0.98 1.85

Polyffusion-S5 0.89 0.93 0.89 0.96 0.90 0.93 0.92 0.81 0.51 0.87 0.97 1.75

Polyffusion-A 0.89 0.93 0.89 0.96 0.90 0.93 0.90 0.94 0.79 0.95 0.98 4.37

Transformer 0.78 0.84 0.88 0.89 0.90 0.83 0.87 0.88 0.56 0.84 0.93 0.13

Sampling 0.86 0.90 N/A N/A 0.89 0.91 0.86 0.90 0.70 0.91 0.93 0.20

Table 2: The objective evaluation and ablation study results. The statistics of generation, accompaniment generation and segment
inpainting are identical for three Polyffusion models (hence gray-out for the latter two models) since they share the same internal control
method.

Creativity Naturalness Musicality1.0

2.0

3.0

4.0
GT
Polyf.

Trf.
Samp.

Figure 4: Subjective evaluation for unconditional generation.

and the error bars are MSEs computed by within-subject

ANOVA [42]. We report a significantly better performance

(p-value < 0.05) of Polyffusion than baseline models in

naturalness and musicality for both tasks and in fitness

for accompaniment generation. Interestingly, Polyffusion

even outperforms the ground truth on the creativity metric.

5.4 Ablation Study

We perform an ablation test on the use of VAE encoders

for condition signals. For both chord conditioning and

texture conditioning, we remove the corresponding pre-

trained encoders. The ablated model of chord condition-

ing uses concatenated 36-D chord vectors as the condition

signals. The ablated model of texture conditioning uses a

modified piano roll representation [13]. Both models are

trained with the same settings as the proposed model. Ta-

ble 2 shows that the ablated models (Polyffusion-A) per-

form worse than the proposed models on the controllabil-

ity metrics (CD & OD), showing the advantage of using

disentangled latent representations as condition signals for

diffusion models.

Creativity Naturalness Musicality Fitness1.0

2.0

3.0

4.0

GT
Polyf.

Trf.

Figure 5: Subjective evaluation for accompaniment generation.

6. CONCLUSION AND FUTURE WORK

In this paper, we propose a diffusion model for polyphonic

symbolic music generation. We show that an image-like

piano roll representation is effective for modeling the mu-

sical context for a high-quality score generation. We spec-

ify two methods for controllable generation: internal con-

trol via masked generation, and external control via condi-

tioning using cross-attention. Experiments show that our

method achieves higher quality and controllability com-

pared to the Transformer and sampling-based baselines on

both internal and external control tasks.

We regard the diffusion framework as a prospective di-

rection for future work on controllable music generation,

since it achieves fine-grained controls over high-quality

generation and enables a wide spectrum of arrangement

applications. Currently, our generation is limited to quan-

tized music scores without performance features. We

plan to extend this methodology to expressive performance

modeling. Several new controls can also be introduced to

facilitate human-AI co-creation of symbolic music, e.g.,

hierarchical structure controls (e.g., music segment labels)

and multimodal controls (e.g., text descriptions).
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