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ABSTRACT

Generating a stereophonic presentation from a mono-

phonic audio signal is a challenging open task, especially

if the goal is to obtain a realistic spatial imaging with

a specific panning of sound elements. In this work, we

propose to convert mono to stereo by means of predict-

ing parametric stereo (PS) parameters using both nearest

neighbor and deep network approaches. In combination

with PS, we also propose to model the task with generative

approaches, allowing to synthesize multiple and equally-

plausible stereo renditions from the same mono signal. To

achieve this, we consider both autoregressive and masked

token modelling approaches. We provide evidence that the

proposed PS-based models outperform a competitive clas-

sical decorrelation baseline and that, within a PS prediction

framework, modern generative models outshine equivalent

non-generative counterparts. Overall, our work positions

both PS and generative modelling as strong and appealing

methodologies for mono-to-stereo upmixing. A discussion

of the limitations of these approaches is also provided.

1. INTRODUCTION

Single-channel monophonic (mono) signals are found in

multiple situations, such as historical recordings or current

ones made with a single microphone (e.g., field recordings,

amateur band rehearsals, etc.). Even recordings made with

two or more microphones that are not spaced enough or

that do not have enough directivity may be better treated

by downmixing to mono (e.g., mobile phone recordings).

Furthermore, many processing algorithms, including mod-

ern deep neural network algorithms, cannot yet or are sim-

ply not designed to handle more than one channel. Unlike

these scenarios, the most common listening experiences,

either though loudspeakers or headphones, involve two-

channel stereophonic (stereo) signals. Hence the useful-

ness of mono to stereo upmixing.

Classical approaches to produce a pseudo-stereo ef-

fect from a mono signal are based on decorrelation. Ini-
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tial approaches used time delays and complementary fil-

ters [1], although all-pass filters [2] are commonly used

nowadays, together with multi-band processing to improve

the effect [3–5]. Instead of multi-band, estimation of fore-

ground/background time-frequency tiles can also be per-

formed [6]. Decorrelation approaches, however, only pro-

vide a mild stereo effect, with limited width, and cannot

spatially separate individual elements in the mix. To over-

come the latter, researchers have considered source sepa-

ration approaches [7–9]. The main idea is that, if individ-

ual elements or tracks are available, those can be panned

to any location, producing a more realistic spatial image.

Nevertheless, this approach presents several drawbacks:

firstly, even the best-performing source separation algo-

rithms produce artifacts [10], which can be highly audi-

ble in the stereo render; secondly, current separation algo-

rithms are very restrictive in the number and types of el-

ements they can separate [11], thus considerably limiting

their application in real-world spatialization tasks; thirdly,

after elements or tracks are separated, it remains to be seen

how can they be automatically panned in a realistic manner

(cf. [12]), which is the reason why separation-based ap-

proaches usually involve user intervention in the panning

stage [7–9].

Music is a paradigmatic example where, apart from

stereo capture, artists and engineers massively exploit the

stereo image to serve a creative artistic intent. Instrument

panning is a fundamental part of music mixing, and achiev-

ing the right balance requires musical sensibility as well as

technical knowledge [13]. However, apart from some style

conventions, the stereo image of a music mix is a highly

subjective construct: given a set of input tracks, there are

many plausible stereo renditions from which selecting the

final mix is practically only a matter of artistic choice.

Hence, we posit that this is a perfect ground for modern

deep generative models [14]. However, to our surprise, we

only found one work using deep neural networks for mono-

to-stereo [15], with very limited generative capabilities.

In this work, we propose the use of machine learning

techniques and parametric stereo (PS) decoding [16,17] for

converting mono to stereo. PS is a coding technique that al-

lows to transmit a stereo signal through a mono signal plus

side information that, with enough bit rate, can be used to

recover an almost transparent version of the original stereo

content. By leveraging machine learning techniques, we

generate (or invent) plausible versions of PS parameters in

situations where side information is not available. These
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parameters can then be used to decode an existing mono

signal into a plausible stereo one. We propose two variants

of PS generation: one based on a classical nearest neigh-

bor approach [18] and another one based on deep gener-

ative modeling. For the latter, we consider both common

autoregressive modeling [19] and more recent masked to-

ken modeling [20], and show that there can be noticeable

differences between the two. We use subjective testing to

compare the proposed approaches and show that PS gen-

eration can produce results that are more appealing than

considered competitive baselines. We also introduce two

objective evaluation metrics and discuss the limitations of

both PS and generative approaches for mono-to-stereo.

2. PARAMETRIC STEREO

PS exploits the perceptual cues that are more relevant to

our spatial perception of sound, namely the fact that direc-

tional sources produce interaural level and phase (or time

delay) differences, and the fact that diffuse sound fields

manifest as decorrelated signals at the two ears. These

cues effectively describe how a mono signal is mapped to

the left and right stereo channels, and can be measured us-

ing three quantities or parameters [16, 17]: interchannel

intensity differences (IID), interchannel time differences

(or, equivalently, phase differences), and interchannel co-

herence or correlation (IC). PS parameters are computed

in frequency bands, to reflect the frequency-dependent na-

ture of the spatial properties of stereo content, and also

on a frame-by-frame basis, to reflect the time-varying na-

ture of frequency cues and spatial images. An important

observation is that PS is capable of capturing spatial at-

tributes that are perceptually relevant and re-instate those

without changing signal levels, tonality, or other artifacts

that may arise from methods that operate on audio sig-

nals directly. In this work, for compactness and ease of

implementation, we choose to use the two-parameter ap-

proach by Breebaart et al. [17], which models IID and IC

without interchannel phase differences, accepting that this

two-parameter approach is not providing the best possible

quality of PS coding. We now overview this PS coding

strategy and introduce the main notation of the article.

2.1 Encoding

Given two complex-valued spectrograms expressed as

complex matrices X and Y, where rows represent fre-

quency bins and columns represent frames, we define the

band-based cross-spectrogram function

ρ(X,Y) = B (X ⊙ Y∗),

where ⊙ denotes elementwise multiplication, ∗ denotes el-

ementwise complex conjugate, and B is a matrix with ones

and zeros that is used to sum frequency bins according

to a certain frequency band grouping (using matrix mul-

tiplication). In this work, we use the same spectrogram

settings and banding as in [17]: frames of 4,096 samples

for 44.1 kHz signals, 75% overlap, a Hann window, and

34 bands which are approximately distributed following

equivalent rectangular bandwidths.

Given the two complex spectrograms L and R corre-

sponding to the left and right channels of a stereo signal,

we can compute the IID using

PIID = 10 log10 (ρ(L,L)⊘ ρ(R,R)) ,

where ⊘ denotes elementwise division. The IC is similarly

derived from the cross-spectrogram following

PIC = Re {ρ(L,R)} ⊘
√

ρ(L,L)⊙ ρ(R,R),

where Re{} extracts the real part of each complex value

and the square root is applied elementwise. Notice that

the use of the real part instead of the absolute value allows

to retain information on the relative phase of the two sig-

nals that would otherwise be lost. We finally quantize PIID

and PIC by discretizing each matrix element. To do so,

we use the same non-uniform quantization steps as in [17]:

31 steps for IID and 8 for IC. We denote the quantized ver-

sions as QIID and QIC.

To facilitate subsequent operation, and to prevent po-

tential prediction mismatches between IID and IC, we join

both parameters and treat them as one. For PIID and PIC,

we concatenate them in the frequency axis and form a sin-

gle matrix P. For QIID
i,j and QIC

i,j , we fuse them elementwise

into individual integers using the amount of IC quantiza-

tion steps. This way, Qi,j = 8 · QIID
i,j + QIC

i,j (note that

we can recover back QIID
i,j and QIC

i,j using the division and

modulo operators).

2.2 Decoding

To decode the above PS encoding, we perform a mixing

between the available mono signal and a decorrelated ver-

sion of it. We decorrelate a mono signal S by applying a

cascade of 4 infinite impulse response all-pass filters and

obtain SD (this all-pass filter is an enhanced version of the

basic one proposed in [17] thanks to transient detection and

preservation, which avoids time smearing). After that, we

can decode the estimated left and right channels L̂ and R̂

by carefully mixing S and SD. We can do so with

L̂ = Ma ⊙ S + Mb ⊙ SD,

R̂ = Mc ⊙ S + Md ⊙ SD,

using mixing matrices M, which are computed from the

coded PS parameters PIID and PIC. The exact calculation of

mixing matrices M is straightforward to obtain by adapting

to matrix notation the formulation in [17], to which we

refer for further detail and explanation.

3. PARAMETRIC STEREO GENERATION

We now explain the proposed approaches for PS genera-

tion. All of them share the above encoding-decoding for-

mulation, either using the quantized or unquantized ver-

sions. During training, stereo signals are used to compute

input downmixes S = (L+R)/2 and target PS parameters

P or Q (hence the proposed approaches aim at producing
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P̂ or Q̂). Note that, in the case of the generative mod-

els we consider, one has to additionally input contextual

PS parameters in a teacher-forcing schema [21]. We also

want to note that, since they are quite common practice,

it is not in the scope of the current work to provide a de-

tailed explanation of existing generative models (instead,

we refer the interested reader to the cited references). In

all proposed approaches, we tune model hyperparameters

by qualitative manual inspection in a preliminary analysis

stage. PS specifications are predefined and correspond to

the ones mentioned in Sec. 2. Neural network approaches

use Pytorch’s [22] defaults and are trained with Adam for

700 epochs using a batch size of 128 and a learning rate of

10−4, with warmup cosine scheduling.

3.1 Nearest neighbor

The first approach proposes to impose the PS parameters

of existing, similar stereo fragments to individual mono

frames using a nearest neighbor (NN) algorithm [18]. We

call the approach PS-NN. The idea is to retrieve frame-

based PS parameters using mono frame sequences, and to

use the sequence of those retrieved parameters to decode

the mono input. At training time, we randomly select a

song, randomly extract an N = 20 frame spectrogram S

and its corresponding parameters P, and compute a key-

value vector pair (we here use the magnitude spectrogram).

The key vector is formed by framewise averaging the en-

ergy in each band,

k =
1

N

N
∑

j=1

B S:,j , (1)

and the value vector corresponds to the PS parameters of

the last frame, v = P:,N , which allows for a fully-causal

schema. We repeat the process half a million times and

store all pairs in a nearest neighbor structure. At test time,

for every frame of the input mono signal, we compute

an average as in Eq. 1, query the nearest neighbor struc-

ture, retrieve the v̂ vector of the closest neighbor (using

Euclidean distance), and assign it as the predicted PS pa-

rameter for that frame. This way, we obtain a sequence of

estimated PS parameters P̂.

In preliminary analysis, we observed that PS-NN pro-

duced a high-rate ‘wobbling’ effect between left and right

(that is, panning was rapidly switching from one channel

to the other) and presented some temporal inconsistencies

(that is, sources were unrealistically moving with time,

even within one- or two-second windows). To counteract

these effects, we implemented a two step post-processing

based on (i) switching the sign of P̂IID
:,j if the Euclidean dis-

tance to P̂IID
:,j−1 was smaller, and (ii) applying an exponen-

tial smoothing on the columns of P̂ with a factor of 0.95.

This post-processing substantially reduced the aforemen-

tioned undesirable effects.

3.2 Autoregressive

The second approach proposes to model PS parameters

with a deep generative approach based on an autoregres-

sive (AR) transformer [19]. We call the approach PS-AR.

Our architecture is composed by 7 transformer encoder

blocks of 512 channels, with 16 heads and a multilayer per-

ceptron (MLPs) expansion factor of 3. We use sinusoidal

positional encoding at the input, and add a two-layer MLP

with an expansion factor of 2 at the output to project to

the final number of classes (which is 31×8 tokens times

34 bands per frame, see Sec. 2.1). The input is formed by

a projection of the mono spectrogram S and the teacher-

forcing information Q into a 512-channel activation H,

H = ϕ(S) +

B
∑

i=1

ξi(Qi,:), (2)

where ϕ is a two-layer MLP with an expansion factor of 2,

B = 34 is the number of bands, and ξi is a learnable per-

band token embedding (which includes the mask token,

see below). We train the model with weighted categorical

cross-entropy, using the weight

w = 1 + λσ
(

[

PIID
]

±ϵ

)

+ σ(PIC), (3)

calculated independently for every element in the batch.

In Eq. 3, σ(X) corresponds to the elementwise standard

deviation of X, λ = 0.15 compensates for different mag-

nitudes, [ ]±ϵ corresponds to the clipping operation, and

ϵ = 20 is a threshold to take into account the little per-

ceptual relevance of IIDs larger than 20 dB [23]. In pre-

liminary analysis, we observed that using w qualitatively

improved results, as it shall promote focus on wider stereo

images and more difficult cases.

PS-AR follows a PixelSNAIL recursive approach [24],

starting with the prediction of lower frequency bands, then

higher frequency bands, and moving into the next frame

once all bands are predicted. To efficiently exploit the past

context, all input sequences have full-sequence teacher-

forcing except for the upper frequency bands of the last

frame, which are masked consecutively and uniformly at

random during training [24]. At test time, we sample re-

cursively, following the same masking strategy and using

a temperature hyperparameter τ = 0.9. In addition, we

employ classifier-free guidance [25] with a hyperparam-

eter γ = 0.25. For that, we use the approach in [26],

which modifies the conditional logits Ucond with uncondi-

tional ones Uuncond such that

U = (1 + γ)Ucond − γUuncond. (4)

To have both a conditional and an unconditional model

within the same architecture, following common practice,

we randomly replace ϕ(S) in Eq. 2 by a learnable dropout

token 10% of the time.

3.3 Masked token modeling

The third approach proposes to model PS parameters with

a deep generative approach based on masked token mod-

eling (MTM) [20]. We call the approach PS-MTM. The

architecture, loss, inputs, and outputs of the model are the

same as in PS-AR, including the cross-entropy weights
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(Eq. 3) and classifier-free guidance (Eq. 4). The only dif-

ference is the masking approach and the sampling proce-

dure, which implies different hyperparameters for the test-

ing stage (we use τ = 4.5 and γ = 0.75, but now the tem-

perature τ has a different meaning as explained below).

MTM generates patch representations Q with quantized

elements Qi,j which are dubbed as tokens (in our case the

matrix Q has dimensions B × N , with N being the num-

ber of considered audio frames; the maximum number of

tokens in Qi,j is 31×8, as defined in Sec. 2.1). During

training, the teacher-forcing input Q is masked uniformly

at random, and only the ground truth elements correspond-

ing to the masked positions are used to compute the cross-

entropy loss at the output. The number of elements to mask

is also selected at random following a cosine schedule [20]

(this specifically includes the case where all patch elements

are masked). During sampling, patch representations are

formed with 50% overlap, using no masking for the first

half of the patch, similar to [26].

MTM sampling is an iterative process that achieves or-

ders of magnitude speedups compared to autoregressive

modeling (in our case PS-MTM uses 20 steps for a 3 s hop,

while PS-AR requires B = 34 steps for just a single au-

dio frame of a few milliseconds). MTM iteratively sam-

ples a masked patch, performs predictions with classifier-

free guidance [26], chooses the predictions with the high-

est logit score for the next iteration (they will become un-

masked and fixed), and reduces the percent of masked to-

kens following the same scheduling as in training until no

masked elements remain [20]. Differently from training,

the masking used in sampling is not random, but based

on logit scores (lowest ones become masked), and noise

is added to logit scores to promote diversity [20, 26]. In

our case, we employ Gaussian noise with zero mean and

a standard deviation τ , which becomes our redefined tem-

perature parameter.

4. EVALUATION

To train and evaluate all approaches we use a collection

of professionally-recorded stereo music tracks at 44.1 kHz.

We consider 419,954 tracks for training and 10 k for eval-

uation, and randomly extract a 10 s chunk from each track.

During training, we sample 6 s patches from those and per-

form data augmentation using a random gain and also ran-

domly switching left and right channels.

4.1 Baselines: regression and decorrelation

In addition to the original stereo and its mono downmix,

we consider two additional baselines to compare with the

previous approaches. The first baseline corresponds to an

ablation of the deep generative approaches, and tries to an-

swer the question of whether a generative component is

needed or convenient for the task. Thus, the baseline con-

sists of a neural network with the exact same configuration

as PS-AR or PS-MTM, but substituting the generative part

by standard regression with mean-squared error [18]. We

term this baseline PS-Reg, and note that it could be con-

sidered an enhanced modern version of the approach of

Chun et al. [15], using PS.

It is interesting to mention that, in preliminary analysis,

we observed that PS-Reg accurately estimated IC values,

but consistently failed to predict IIDs. The predicted IIDs

had minimal deviation from zero, which can be attributed

to the probability distribution function of IID values be-

ing centered around zero with equally plausible deviations

to the right and to the left. This was an early indication

that the one-to-many mapping of IID prediction cannot be

correctly handled by regression methods, and that the task

would be better served by a generative approach.

The second baseline we consider corresponds to a vari-

ant of classical decorrelation approaches. Here, the decor-

relation is implemented by means of an all-pass filter

network enhanced by (i) detection and preservation of

transients, and (ii) a frequency-dependent mix between

original and decorrelated signals to achieve a frequency-

dependent IC. We term this baseline Decorr, and we note

that it could be considered an improved modern version of

the approaches [1–6].

4.2 Objective measures

To the best of our knowledge, there are no objective mea-

surements for plausible stereo renderings nor suitable PS

prediction scores. Due to the highly creative/subjective na-

ture of the task, common error measurements may not be

appropriate. Therefore, as a way of measuring progress,

we propose to use a couple of metrics inspired from the lit-

erature on generative modeling (cf. [14]). The first metric

we consider is the minimum error on a large sample basis,

Emin. Given a large sample of generated PS parameters

(K = 128 for a single audio excerpt), Emin chooses the

minimum error with respect to the ground truth:

Emin = min
k





∑

i,j

δ
(

Pi,j , P̂
(k)

i,j

)



 ,

where δ is a suitable error function. The idea is that if we

allow the model to generate many samples for every input,

in the limit of very large K one of them should come close

to the ground truth. For PS parameters, we use absolute

errors, weight the IID to compensate magnitudes with IC,

and take into account some perceptual relevance for IID as

in Sec. 3.2 and Eq. 3:

δ(x, y) =

{

λ |[x]±ϵ − [y]±ϵ| for IID,

|x− y| for IC.

The second metric we consider is the Fréchet distance

on the PS parameter space, DF. Given a pool of PS param-

eters P and a K times larger pool of generated parameters

P̂ , assuming Gaussian distributions, DF is computed as

DF =
∣

∣

∣
µ(P)− µ(P̂)

∣

∣

∣

2

+

+ Tr

{

σ(P) + σ(P̂)− 2

√

σ(P)σ(P̂)

}

,
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Figure 1. Preference results for the items included in the subjective test (Sec. 4.3). Markers indicate average values and

vertical bars indicate the 95% confidence interval associated to them.

where Tr{} denotes the matrix trace and µ and σ corre-

spond to the mean vector and the covariance matrix over

frames, respectively. The Fréchet distance has become a

standard measure in generative modeling where, instead

of the PS parameters used here, activations of pre-trained

classification networks are used. We will see that it is also

able to provide some informative cues in our task (Sec. 5).

4.3 Subjective evaluation

Given the creative/subjective nature of the task, the best

way to measure performance is through subjective testing.

In this study, we ran a preference test with 24 listeners on

7 song excerpts of 10 s from the test set. To select those ex-

cerpts, we ranked the test excerpts based on w (Eq. 3) and

randomly selected them from the top quartile. When do-

ing so, we manually verified that the selected excerpts cov-

ered distinct musical genres and ensured that a PS-decoded

version did not exhibit significant coding degradation (this

way, we prime the listener to focus on the stereo image

instead of potential artifacts introduced by our implemen-

tation of PS, Sec. 2).

The test consisted in providing a rating between 0 and

100 to 7 approaches: the three proposed ones, the two

baselines, the mono downmix, and the original stereo sig-

nal (professional mix, non-coded). Mono and stereo sig-

nals provide us with intuitive bounds for the analysis of

preference, and also serve us to discard non-expert lis-

teners. Indeed, we found that the task is quite hard

for non-experts, who provided many inconsistent ratings

when asked to evaluate an appropriate balance between

the width and the clarity of the mix. We used the most

obvious of those inconsistencies to discard listeners from

the test, namely the fact that they rated mono (input) over

stereo (professional mix) in one or more occasions. Half

of the users (12) did not incur into such inconsistency

and were considered reliable enough to derive conclusions

from their ratings. To compensate for differences in sub-

jective scales, we normalized excerpt preference tuples

between 0 and 1 (that is, we normalized the ratings for

the 7 approaches independently per audio excerpt and lis-

tener). To measure statistical significance, we used pair-

wise Wilcoxon signed-rank tests and applied the Holm-

Bonferroni adjustment for multiple testing with p = 0.05.

The Wilcoxon signed-rank test is appropriate for our case

as it is non-parametric and designed for matched samples.

5. RESULTS

In Fig. 1 we depict the average listener preference for each

item and approach. Initially, we see that the pattern differs

depending on the test item. For some items, the proposed

approaches are preferred over the baselines (e.g., Electro1,

Jazz1, and Latin3) while, for some other items, differences

between approaches are less clear (e.g., Rock1 and Soul2).

All approaches seem to be preferred above the mono sig-

nal, except for baseline approaches with Electro1. Notice-

ably, in some situations, preference for some of the pro-

posed approaches even overlaps with the original stereo

(e.g., Electro1, Latin3, and Soul2). The case of Soul2

shows an example where considered approaches are al-

most as preferred as the original stereo, whereas the case

of Jazz1 shows an example where considered approaches

are still far from the professional mix.

Despite the different preferences on individual excerpts,

upon further inspection we see that a clear pattern emerges

when considering all items: proposed approaches rank bet-

ter than mono and the considered baselines (Fig. 1, right).

In Table 1 we confirm that, on average, PS-AR is preferred

over the baseline approaches and that, in turn, PS-NN and

PS-MTM are preferred over PS-AR. In Table 2, we report

statistically significant differences beetween PS-NN/PS-

MTM and the baseline approaches, but not between PS-AR

and the baseline approaches (and neither between PS-AR

and PS-NN/PS-MTM nor between PS-NN and PS-MTM).

Overall, the results show that a generative approach to PS

prediction can become a compelling system for mono-to-

stereo. The performance of PS-NN is a nice surprise that

was not predicted by the objective metrics, which other-

wise seem to correlate with listener preference (Table 1;

perhaps PS-NN does not follow the trend because it is not

a generative approach).

Besides quality, another aspect worth considering is
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Approach Emin ↓ DF ↓ Preference ↑

Mono 0.104 20.89 0.090 ± 0.042

PS-Reg 0.069 8.11 0.451 ± 0.066

Decorr 0.093 8.32 0.457 ± 0.064

PS-AR 0.074 0.62 0.527 ± 0.060

PS-NN 0.089 3.08 0.582 ± 0.057

PS-MTM 0.068 0.59 0.608 ± 0.050

Stereo 0.000 0.03 0.908 ± 0.042

Table 1. Results for the objective (Emin, DF) and subjec-

tive (Preference ± 95% confidence interval) evaluations.

PS-Reg Decorr PS-AR PS-NN PS-MTM Stereo

Mono ✓ ✓ ✓ ✓ ✓ ✓

PS-Reg ✗ ✗ ✓ ✓ ✓

Decorr ✗ ✓ ✓ ✓

PS-AR ✗ ✗ ✓

PS-NN ✗ ✓

PS-MTM ✓

Table 2. Pairwise statistical significance for the case of all

test items (12 subjects times 7 excerpts, see Sec. 4.3). The

obtained p-value threshold is 0.0053.

speed. In Table 3 we observe that PS-AR, as anticipated,

is orders of magnitude slower than the other approaches, to

the point of making it impractical for real-world operation.

Decorr, PS-Reg, and PS-NN are faster than real-time on

CPU and PS-MTM is not. However, one should note that

with PS-MTM we can easily trade off sampling iterations

at the expense of some quality reduction (see [20, 26]).

PS-NN may dramatically improve speed if we consider

the use of fast nearest neighbor search algorithms or even

hash tables, which make this approach very interesting for

real-world deployment (note we deliberately made PS-NN

comparable in size to the other approaches, see Table 3).

6. DISCUSSION

Despite the good results obtained above, the subjective test

reveals that, for some of the considered excerpts, there is

still a gap between professional stereo mixes and the pro-

posed approaches. We hypothesize that this gap is due to

(i) limitations of the considered PS encoding, and (ii) the

difficulty of the task itself. Regarding (i), we suspect that

part of the low subjective scores of PS-based approaches is

due to the audio distortions and tonal artifacts introduced

by the PS decoding. Thus, we hypothesize that using a

commercial implementation of PS coding (or perhaps even

learning end-to-end the coding operation) could yield bet-

ter results. Besides, we think that the fact that PS is defined

in a banded domain poses a challenge to PS generation ap-

proaches, namely that individual bands are panned but ap-

proaches do not have an explicit notion of instrument or

‘entity’. Indeed, we sometimes observe individual entities

being panned into two different positions simultaneously

(e.g., for the same instrument, we may get some frequen-

cies panned to the left and some to the right, which is an

uncommon stylistic decision). A potential solution to this

Approach Learnable RTF ↓
parameters CPU GPU

Decorr 0 0.25 n/a

PS-Reg 30.1 M 0.32 0.21

PS-NN 34.0 M† 0.82 n/a

PS-MTM 34.5 M 5.81 0.33

PS-AR 34.5 M 255.87 8.38

Table 3. Number of learnable parameters and average real-

time factor (RTF). Superscript † indicates an estimation

of 0.5 M key-value pairs with B = 34 bands (Sec. 3.1).

RTFs are measured on a Xeon(R) 2.20 GHz CPU and on a

GeForce GTX 1080-Ti GPU.

problem could be to add better (or more) inputs to the mod-

els, together with more capacity, with the hope that they

achieve a better understanding of what is a source before

panning it. Along this line, it would be perhaps interesting

to include some techniques used in the context of source

separation with neural network models [11]. Regarding

(ii), another issue we sometimes observe is with the tem-

poral consistency of panning decisions, with an instrument

appearing predominantly in one channel but then moving

(without much artistic criterion) to the other channel after

10 or 20 s. Handling temporal consistency is a transversal

problem across all generative models, typically handled by

brute force (that is, more receptive field and/or larger mod-

els) or by some form of hierarchical or recurrent process-

ing. Nonetheless, it is still an open issue, especially in the

case of really long sequences like audio and music.

In addition to the limitations inherent to the technol-

ogy, there are also some shortcomings in the test method-

ology. The subjective tests were conducted using head-

phones, whereas stereo images are typically created and

mixed in a studio using professional loudspeaker monitor-

ing. This implies that when critically evaluating the pro-

posed approaches on a professional setup, additional sub-

tleties might be discernible. Another methodological chal-

lenge was that often users had difficulty in evaluating mul-

tiple test excerpts according to the stated evaluation crite-

ria. A potentially contributing factor to it was the absence

of a standardized test methodology for multiple preference

testing without a reference.

7. CONCLUSION

In this work we study methods to convert from mono to

stereo. Our proposal entails (i) the use of PS for mono

to stereo upmixing and (ii) the synthesis of PS parame-

ters with three machine learning methods. We also in-

troduce (iii) the use of modern generative approaches to

the task and propose two variants of them. We addition-

ally (iv) overview and adapt an existing PS methodology

and (v) propose two tentative objective metrics to evaluate

stereo renderings. The three proposed approaches outper-

form the classical and the deep neural network baselines

we consider, and two of such approaches stand out with a

statistically significant difference in the subjective test.
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