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ABSTRACT

Recent developments in MIR have led to several bench-

mark deep learning models whose embeddings can be used

for a variety of downstream tasks. At the same time, the

vast majority of these models have been trained on Western

pop/rock music and related styles. This leads to research

questions on whether these models can be used to learn

representations for different music cultures and styles, or

whether we can build similar music audio embedding mod-

els trained on data from different cultures or styles. To that

end, we leverage transfer learning methods to derive in-

sights about the similarities between the different music

cultures to which the data belongs to. We use two Western

music datasets, two traditional/folk datasets coming from

eastern Mediterranean cultures, and two datasets belonging

to Indian art music. Three deep audio embedding mod-

els are trained and transferred across domains, including

two CNN-based and a Transformer-based architecture, to

perform auto-tagging for each target domain dataset. Ex-

perimental results show that competitive performance is

achieved in all domains via transfer learning, while the best

source dataset varies for each music culture. The imple-

mentation and the trained models are both provided in a

public repository.

1. INTRODUCTION

As the time passes by, more and more pre-trained models

are being made available in the MIR field. These models

can be used in a variety of tasks by providing informative

deep audio embeddings for music pieces. In correspon-

dence with publicly available datasets, the vast majority

of these models are trained on the so called “Western” 1

musical tradition [1]. While studying world, folk, or tradi-

tional music, that fact arises two research questions; on the

one hand what is the potential of these models when they

1 we use the term “Western” to denote music styles which mostly orig-
inate from Western cultures, including pop, rock, and Western classical.
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are being used in the realm of a different culture and on the

other hand how capable can a model be when trained on

a specific music tradition on providing meaningful audio

embeddings.

There are several experimental setups one can employ

in order to derive answers to the above questions. By tak-

ing into account the importance of the auto-tagging task in

the MIR field [2], it becomes clear that transferring knowl-

edge between domain-specific models to perform this task

may lead us to valuable insights. Automatic content-based

tagging aims to predict the tags of a music piece given its

audio signal. The audio signal includes the acoustic char-

acteristics and some of them are responsible for the oc-

currence of a tag in a piece, forming a multiple instance

problem [3].

A variety of models have been proposed to cope with

the automatic tagging of music pieces. They can be di-

vided, according to the input data they process, into the

ones that utilize time-frequency representations and the

others that accept the raw audio signal. In the first cate-

gory, CNN-based models which are adopted by the com-

puter vision field can be found, such as VGG-ish [4] as

well as specifically developed architectures for music, like

Musicnn [5]. A Transformer-based architecture was re-

cently proposed in [6] called Audio Spectrogram Trans-

former (AST). Regarding the models that process audio,

the TCNN [7] and the Wave-U-Net [8] architectures are

being commonly used. For the purposes of our study, it

is essential to use models of the same category with re-

spect to the input they accept and, thus, we selected the

ones that process time-frequency representations because

of their popularity in the MIR field.

While using deep neural networks, transfer learning of

a trained model can lead to a significant performance im-

provement on the target domain, compared to one that

starts from a random state in the parameters space [9]. Typ-

ically, the weights of the target domain model are initial-

ized with the ones of a pre-trained model and then fine-

tuning is applied. During this step, one has to determine

which of the layers will be trainable and which ones will

be kept frozen [10]. In general, it is not clear which part

of the network should be allowed to be trained in the tar-

get task and, thus, experimentation with different setups is

necessary. Standard methods include the fine-tuning of the

whole network, as suggested in [11], as well as only the

last few layers or a part of the network, as in [12]. We
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experiment with both setups to derive valuable insights on

knowledge transfer across domains.

Even though under-represented in general, datasets

from specific music cultures are evident in the MIR field

and a set of the aforementioned methods have been used to

perform several tasks. In [13] a classification of Indian art

music was conducted using deep learning models while au-

tomatic makam recognition in Turkish music was carried

out in [14, 15]. With respect to Western music, there are

several research works performing auto-tagging via deep

learning models, as in [16] and [17].

In this paper, we incorporate a mosaic of different cul-

tures by including six datasets from Western to Mediter-

ranean and Indian music. Three music audio embedding

models, two that mainly consist of convolutional layers

and a Transformer-based architecture, are utilized on both

single-domain and transfer learning experimental setups

for music tagging. Results indicate that any model, de-

spite the music culture that it is trained on, has the po-

tential to adapt to another and achieve competitive results.

When comparing the contributions of cross-domain knowl-

edge transfers, we notice that they vary for each music

culture and we suggest which one is the best candidate to

outperform the single-domain approach. To the authors’

knowledge, this is the first study which attempts to explore

whether existing music audio embedding models can be

used to transfer or learn representations for non-Western

cultures. For reproducibility, we share the implementation

in a public repository 2 .

2. DATASETS

The selection of the datasets is a prominent theme in the

current study and it is constrained by the available corpora

that reflect different music cultures. By basing our intu-

ition on the location of each culture, we pursue to include

three distinct geographic regions each one represented by

two corpora.

Even though spread in several continents, we consider

the “West” as a single entity and utilize the MagnaTa-

gATune [18] and FMA-medium [19] datasets that mainly

belong to this culture. The second region is the eastern

Mediterranean represented by the traditions of Greece and

Turkey in our study with Lyra [20] and Turkish-makam

[21] datasets. The Indian subcontinent is also incorporated

with Hindustani and Carnatic corpora [22], corresponding

to the music traditions of the Northern and Southern areas

of India respectively.

2.1 MagnaTagATune

MagnaTagATune [18] is a publicly available dataset that is

commonly used for the auto-tagging problem in the MIR

field. It consists of more than 25,000 audio recordings,

summing to 210 hours of audio content at total. Each

audio recording is annotated with a subset of the unique

188 tags. Typically, only the top 50 most popular tags are

used, which include annotations about genre, instruments

2 https://github.com/pxaris/ccml

and mood. In Table 1, the most frequent tags for Mag-

naTagATune are presented along with the ones of the other

datasets.

2.2 FMA-medium

The Free Music Archive [19] is an open and easily acces-

sible dataset that is used for evaluating several tasks. It

contains over 100,000 tracks which are arranged in a hier-

archical taxonomy of 161 genres. In order to keep the du-

rations of the datasets balanced whenever possible, and to

include genres belonging to Western music styles, we use

FMA-medium that consist of 25,000 tracks of 30 seconds

each. That means that its total duration is 208 hours, al-

most equal to the one of MagnaTagATune. With regards to

the metadata, we include the top-20 hierarchically related

genres of the music pieces.

2.3 Lyra

Lyra [20] is a dataset for Greek traditional and folk music

that comprises 1570 pieces and metadata information with

regards to instrumentation, geography and genre. Its to-

tal duration is 80 hours which makes it the only dataset

with duration less than 200 hours in our study. We in-

corporate the top-30 tags retrieved from columns “genre”,

“place” and “instruments” to form our multi-label classifi-

cation setup.

2.4 Turkish-makam

The Turkish makam corpus [21, 23] includes thousands of

audio recordings covering more than 2,000 works from

hundreds of artists. It is part of CompMusic Corpora 3 [24]

which comprises data collections that have been created

with the aim of studying particular music traditions. Us-

ing Dunya [25] and the related software tool 4 , we were

able to get access to 5297 audio recordings, summing in

359 hours, along with their metadata. In order to keep

the dataset sizes similar, we set a maximum audio dura-

tion equal to 150 seconds which reduced the total length to

215 hours. For the tags, the top-30 most popular with re-

gards to “makam”, “usul” and “instruments” information

have been included.

2.5 Hindustani

The Hindustani corpus [22] is also part of CompMusic

Corpora. It includes 1204 audio recordings, with a total

duration of 343 hours, covering a plethora of artists and

metadata categories. By setting the maximum audio du-

ration to 780 seconds, the size of the dataset has been de-

creased to 206 hours for the needs of our study. Further-

more, information about “raga”, “tala”, “instruments” and

“form” has been used to form the labels of each piece. The

top-20 most frequent tags have been incorporated to our

study as the target of the classification models.

3 https://compmusic.upf.edu/corpora
4 https://github.com/MTG/pycompmusic
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MagnaTagATune FMA-medium Lyra Turkish-makam Hindustani Carnatic

guitar 18.76% Rock 28.41% Voice 76.21% Voice 63.33% Voice 83.90% Voice 82.35%

classical 16.52% Electronic 25.26% Traditional 76.05% Kanun 31.09% Tabla 53.03% Violin 78.45%

slow 13.71% Punk 13.28% Violin 57.34% Tanbur 27.93% Khayal 41.33% Mridangam 75.65%

techno 11.42% Experimental 9.00% Percussion 53.71% Ney 27.56% Harmonium 39.25% Kriti 70.87%

strings 10.55% Hip-Hop 8.80% Laouto 51.69% orchestra 26.38% Teentaal 35.35% adi 51.88%

drums 10.05% Folk 6.08% Guitar 37.34% Oud 24.36% Tambura 27.88% Ghatam 30.32%

electronic 9.74% Garage 5.67% Klarino 31.05% kemence 22.79% Ektaal 21.58% Khanjira 17.65%

rock 9.17% Instrumental 5.40% Nisiotiko 26.85% Cello 17.83% Pakhavaj 7.88% rupaka 11.98%

fast 8.92% Indie-Rock 5.17% place-None 25.16% Violin 17.62% Sarangi 7.30% mishra chapu 7.27%

piano 7.95% Pop 4.74% Bass 24.76% Hicaz 10.63% Dhrupad 7.05% Tana Varnam 5.21%

Table 1. Relative frequencies of the top 10 most popular tags in each dataset.

2.6 Carnatic

The Carnatic corpus [22] comprises 2612 audio record-

ings, summing in more than 500 hours of content. As

with the previous datasets, by setting a maximum dura-

tion cut equal to 330 seconds, the total duration has been

decreased to 218 hours. Identical to Hindustani, the top-20

most popular annotations regarding “raga”, “tala”, “instru-

ments” and “form” have been included for the metadata.

3. METHOD

In this section, the models which are used for the purposes

of this study are first presented. We, then, describe how

transfer learning is utilized to infer similarities between the

music cultures by employing knowledge from the domain

adaptation field.

3.1 Models

3.1.1 VGG-ish

All of our models use the mel-spectrogram as their in-

put, a commonly used feature for MIR tasks such as au-

tomatic tagging [26]. This selection enables the utiliza-

tion of CNN-based architectures which have been success-

fully used in computer vision tasks. The Visual Geometry

Group (VGG) network [27] and its variants consist of a

stack of convolutional layers followed by fully connected

layers.

We use a VGG-ish architecture, similar to the one im-

plemented by the authors in [28], that is a 7-layer CNN,

with 3 × 3 convolution filters and 2 × 2 max-pooling,

followed by two fully-connected layers. It accepts mel-

spectrograms that correspond to short chunks of audio as

its input, with duration equal to 3.69 seconds.

3.1.2 Musicnn

Musicnn [17] is a music inspired model that uses convo-

lutional layers at its core. Its first convolutional layer con-

sists of vertical and horizontal filters in order to capture

timbral and temporal features respectively. These features

are, then, concatenated and fed to 1D convolutional lay-

ers followed by a pair of dense layers that summarize them

and predict the relevant tags. Similar to VGG-ish, it uses

mel spectrograms from short audio chunks at its input with

duration 3 seconds.

3.1.3 Audio Spectrogram Transformer

As its name indicates, Audio Spectrogram Transformer

(AST) is a purely attention-based model for audio classi-

fication [6]. Based on the Transformer architecture [29],

AST splits the input mel-spectrogram to 16×16 patches in

both time and frequency dimensions that are, in turn, flat-

tened to 1D embeddings of size 768 using a linear projec-

tion layer. A trainable positional embedding is also added

to each patch embedding so that the model will capture

the spatial structure of the input 2D spectrogram. The re-

sulting sequence is fed to the Transformer, where only the

encoder is utilized since AST is designed for classification

tasks. The output of the encoder is followed by a linear

layer that predicts the labels. As the authors that intro-

duced the architecture suggest, we set a specific cut to the

input length of the AST model that is equal to 8 seconds in

all our experiments.

3.2 Transfer Learning

The purpose of transfer learning is to improve the per-

formance of the models on target domains by transferring

knowledge from different but related source domains [30].

In the field of MIR, both transferring feature representa-

tions to the target domain from a pre-trained model on a

source task [31] as well as learning shared latent represen-

tations across domains [32] have been proposed in the past.

Yet, these methods have not been applied to non-Western

music datasets neither by adapting an existing model to

them nor by studying to what end these cultures can be

valuable source domains for widely developed models, two

aspects which are both studied in this work.

According to the categorization conducted by the au-

thors in [33], these methods belong to parameter sharing

category of the model-based transfer learning techniques.

In the deep learning realm, it is, thus, common to use a

trained network for a source task, share its parameters and

in turn fine-tune some or all layers to produce a target net-

work. While following this method, one expects it to lead

to better results when the participating domains are similar
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Model VGG-ish Musicnn AST

Metric /

Dataset
ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

MagnaTagATune 0.9123 0.4582 0.9019 0.4333 0.9172 0.4654

FMA-medium 0.8889 0.4949 0.8766 0.4473 0.8886 0.5024

Lyra 0.8097 0.4806 0.7391 0.4042 0.8476 0.5333

Turkish-makam 0.8696 0.5639 0.8505 0.5299 0.8643 0.5669

Hindustani 0.8477 0.6082 0.8471 0.6016 0.8307 0.5786

Carnatic 0.7392 0.4278 0.7496 0.4182 0.7706 0.4394

Table 2. ROC-AUC and PR-AUC scores of the models on single domain auto-tagging tasks.

to each other. Indeed, by studying the prior work on do-

main adaptation, one will find that the main strategy con-

sists of minimizing the difference between the source and

target feature distributions, when transferring representa-

tions from a labeled dataset to a target domain where la-

beled data is sparse or non-existent [34, 35].

By adapting the above rationale to our study, where the

participating domains are all rich in labeled data, we expect

that when applying transfer learning by parameter sharing,

the more the similarity between the participating domains

the better the performance of the target domain on its su-

pervised learning task.

In order to study to what end this hypothesis stands in

computational musicology with deep neural networks, we

utilize the previously presented models which are widely

used in the MIR field and consist of different cores, namely

convolutional layers (VGG-ish and Musicnn) and a Trans-

former module (AST). Having the models trained on each

single dataset, we apply all the cross-domain knowledge

transfers for each architecture by fine-tuning only the out-

put layer as well as the whole network. We then aggre-

gate the results across the models seeking to derive in-

sights with regards to the similarities between the domains

as well as specifying which source is the best candidate for

each target dataset.

4. EXPERIMENTS

As already mentioned, we use mel spectrograms as the

input of all our models. In order to convert the audio

recordings of the datasets to this representation, we use Li-

brosa [36] to re-sample them to 16 kHz sample rate. Then,

512-point FFT with a 50% overlap is applied, the maxi-

mum frequency is set to 8 kHz and number of Mel bands

to 128. Our intention, in this study, is not the optimization

of the performance of the single-domain tasks but rather

studying the knowledge transfer across the domains. So,

we keep our training setup as close as possible to the liter-

ature, at each single domain task, in order to have a sanity

check for the implementation.

For VGG-ish and Musicnn models, we use a mixture

of scheduled Adam [37] and stochastic gradient descent

(SGD) for the optimization method, identical to what the

authors at [28] have used. The batch size is set to 16 and

the learning rate to 1e− 4 for both models while the max-

imum number of epochs are 200 for VGG-ish and 50 for

Musicnn. With regards to the AST model, we follow the

setup proposed in [6], namely batch size 12, Adam opti-

mizer, learning rate scheduling that begins from 1e − 5
and is decreased by a factor of 0.85 every epoch after the

5th one as well as pre-trained on Imagenet Transformer

weights.

All our models accept a fixed size audio chunk at their

input but need to predict song-level tags. During the evalu-

ation phase, we aggregate the tag scores across all chunks

by averaging them to acquire the label scores for the whole

audio. We use the area under receiver operating character-

istic curve (ROC-AUC), a widely used evaluation metric

on multi-label classification problems and the area under

precision-recall curve (PR-AUC), a suitable metric for un-

balanced datasets [38].

During transfer learning, we initialize all parameters of

the target model, except for the output layer, from each

source dataset and (i) allow only the output layer to be

trained and (ii) train the whole network. In both settings,

we use the same hyper-parameters and evaluation proce-

dure with the single-domain setups across all datasets for

each model architecture.

5. RESULTS

The performance of the three models on all single-domain

tasks can be seen in Table 2. The performance of the Mu-

sicnn and VGG-ish models on MagnaTagATune is similar

to the reported metrics in [28], which indicates the validity

of our implementation. In general, the AST model shows

the best performance followed by VGG-ish and then Mu-

sicnn. This result should not be taken into account solidly,

because no hyper-parameter tuning has been taken place

for each domain and in order to keep the duration of the

training to less than 24 hours for each task, the number of

epochs for Musicnn was significantly less than VGG-ish.

On the other hand, one should consider that the AST [6]

and VGG-ish [28] models may, indeed, perform better for

limited time resources.

In Table 3, one can see the ROC-AUC scores in all

single-domain and cross-domain setups. The rows are the

source datasets while the columns are the target datasets.

A sub-table is constructed for each model architecture and

for a transfer from domain A to B, the result of the fine-

tuning of only the output layer (‘output’) as well as all

the layers (‘all’) are reported. The single-domain setup is
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Target domain MagnaTagATune FMA-medium Lyra Turkish-makam Hindustani Carnatic

trainable layer(s) /

Source domain
output all output all output all output all output all output all

VGG-ish

MagnaTagATune - 91.23 88.11 92.39 74.69 85.40 76.79 86.84 76.09 85.04 67.19 74.71

FMA-medium 85.82 91.29 - 88.89 68.56 84.04 75.40 87.78 75.77 84.39 67.03 74.56

Lyra 84.34 90.93 82.84 92.10 - 80.97 76.98 87.21 77.41 84.24 67.30 73.52

Turkish-makam 85.19 90.90 84.41 91.74 70.93 82.38 - 86.96 77.54 85.32 67.16 73.50

Hindustani 84.24 91.02 83.83 91.91 66.27 79.71 77.25 87.63 - 84.77 66.72 74.63

Carnatic 84.18 91.00 82.62 91.73 61.59 76.72 77.07 87.40 78.19 84.81 - 73.92

Musicnn

MagnaTagATune - 90.19 87.34 91.03 71.79 78.74 74.72 85.96 75.87 84.18 66.12 75.57

FMA-medium 85.52 90.35 - 87.66 65.94 77.59 75.51 85.13 73.16 85.49 66.38 75.77

Lyra 81.38 90.03 82.23 90.80 - 73.91 74.11 85.20 78.10 83.29 65.09 75.51

Turkish-makam 84.35 90.11 83.79 90.81 61.87 79.83 - 85.05 75.67 83.75 67.49 74.09

Hindustani 82.38 89.86 83.42 90.85 64.48 78.95 74.60 85.58 - 84.71 65.25 76.95

Carnatic 83.02 90.05 82.78 90.74 61.83 77.92 75.09 85.43 75.34 84.19 - 74.96

AST

MagnaTagATune - 91.72 89.25 91.99 75.68 83.77 76.28 87.20 74.67 86.57 66.03 75.43

FMA-medium 88.63 91.62 - 88.86 65.72 82.17 76.37 87.43 74.51 85.76 67.33 75.98

Lyra 87.49 91.44 87.44 92.43 - 84.76 77.08 86.80 72.24 83.73 68.47 76.59

Turkish-makam 87.33 91.40 86.31 91.95 72.70 77.95 - 86.43 70.13 83.56 67.10 75.23

Hindustani 87.40 91.35 87.11 92.26 71.74 84.60 75.70 86.90 - 83.07 67.75 75.85

Carnatic 87.42 91.45 86.83 91.75 63.33 81.44 76.87 87.14 74.11 82.91 - 77.06

Table 3. ROC-AUC scores (%) when applying transfer learning using the models VGG-ish, Musicnn and Audio Spectro-

gram Transformer. Rows are the source domains and columns the target domains. After initializing the network with the

parameters of the trained (at the source dataset) model, fine-tuning on the output layer as well as on the whole network

is applied. The diagonal values (under the “all” columns) correspond to the respective single-domain models (no transfer

learning) where the experimentation with only the output layer trainable has no meaning.

when source and target is the same dataset and, thus, only

training of the whole network has meaning. The table is

better parsed column-wise, e.g., by inspecting the results

of VGG-ish model on MagnaTagATune when transferring

knowledge from the other domains at the upper-left pair of

columns in the table.

In order to aggregate all the cross-domain knowledge

transfers, we follow the subsequent procedure: for each

target task that consists of a specific model, target dataset

and fine-tuning method, min-max normalization is applied

to the N −1 transfer learning results, where N is the num-

ber of all datasets. The previous step leads to the con-

struction of M ×F matrices, M the number of the models

and F the number of fine-tuning methods, where rows are

the source domains, columns the target domains and di-

agonal elements are empty. Each cell has a value in the

range [0, 1], as a result of the normalization step, while the

value 1 corresponds to the knowledge transfer that led to

the best performance in the target domain. By calculating

the element-wise mean of the produced M × F matrices,

we reach to the result that can be seen in Figure 2.

6. DISCUSSION

The results indicate that knowledge transfer both from

Western to non-Western cultures and the opposite can be

beneficial when deep learning models are used to perform

automatic music tagging. Indeed, by inspecting Table 3,

the general take-home message one should acquire is that

regardless of the model architecture, all datasets have the

potential to contribute as a source to a target domain by

providing their deep audio embeddings. To investigate how

valuable knowledge transfers from widely used datasets

to non-Western music cultures can be, we focus on the

last four datasets, i.e., the last eight columns of the ta-

ble, and parse the two first rows, corresponding to Mag-

naTagATune and FMA datasets, at each model architec-

ture. For instance, we notice that for Lyra, when Musicnn

is used and fine-tuning only of the output layer is applied,

the model coming from MagnaTagATune has the greater

ROC-AUC score, namely 71.79%. Additionally, the AST

model trained on the FMA-medium dataset, outperforms

the others when totally fine-tuned to the Turkish-makam

dataset, scoring 87.43%.

In order to study the inverse transfer direction, we cen-

ter our interest to the first four columns of the entire table.

Even though MagnaTagATune and FMA are almost always

the best source for each other, the deep audio embeddings

provided by the other datasets achieve competitive perfor-

mance. For example, when MagnaTagATune is the target

domain and fine-tuning is restricted to the output layer of

the network, we observe that transferring from Turkish-
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Figure 1. Average, over the three models, ROC-AUC scores of all cross-domain transfers when fine-tuning of the output

layer is applied. The highest bar at each group corresponds to the respective single-domain model.

Figure 2. Cross-cultural music transfer learning results.

Rows correspond to the source datasets and columns to the

target datasets. The value of each cell (knowledge trans-

fer) is normalized and averaged across all models and fine-

tuning methods.

makam leads to a performance that is comparable to the

best source (FMA-medium) for all models.

By considering all cross-domain knowledge transfers,

one can specify the best candidate to provide a trained

model, with a specific architecture, for each target dataset.

We, thus, notice that the model that is transferred from

Hindustani outperforms the others at the Carnatic dataset,

when fine-tuning on the whole Musicnn architecture is ap-

plied. A holistic picture of the cross-cultural music transfer

learning is depicted in Figures 1 and 2.

In Fig. 1 the scores of all cross-domain transfers when

fine-tuning the output layer, can be seen, averaged across

the three models. The uniformity of the performances

of different sources at each target dataset can be exam-

ined. We, thus, recognize that the most unbalanced perfor-

mances are spotted on the Lyra target domain, a result that

is probably related to the smaller size of this dataset com-

pared to the others. By exploring Fig. 2 in a column-wise

fashion, we observe that for MagnaTagATune as the tar-

get domain, FMA-medium is the best source with a value

equal to 1. This means that in all transfer learning setups,

this source performed better than the others in this domain.

Both figures show that MagnaTagATune and FMA-

medium perform consistently well across the domains,

something that possibly indicates their appropriateness for

the auto-tagging task. However, as we move to the East-

ern cultures, we notice that their contribution is somehow

decreased and other domains tend to contribute similarly

or even more in those targets. The values at Fig. 2 should

not be considered solidly as similarity metrics between the

domains because other factors may also affect the results

we notice. It is, although, a first step towards studying dif-

ferent music cultures using deep learning methods.

7. CONCLUSIONS

In this paper, the transferrability of music cultures by uti-

lizing deep audio embedding models is studied. To that

end, six datasets and three models were employed while

experimentation with two fine-tuning methods took place.

The automatic tagging of music pieces served as the su-

pervised learning task where all cross-domain knowledge

transfers were applied and evaluated.

The results show that state-of-the-art models can bene-

fit from knowledge transfer not only from Western to non-

Western cultures but also the opposite too. By aggregating

the scores across all models and fine-tuning methods, the

suitability of each source domain for a target task was cal-

culated and, thus, which domain can be the best candidate

to transfer knowledge from for each dataset was proposed.

Based on the literature, we suggest that this result can be

interpreted to a degree as a similarity metric between the

music cultures.

We identify that the current study has limitations. In

the future, the semantic similarities between the labels of

the involved domains will be examined. More datasets and

models, like those that process raw audio signals, will be

considered as well as semi-supervised and unsupervised

learning techniques. Other tasks may be employed such

as mode estimation, assuming that key in Western cultures

functions in a similar way with makam or raga in other

cultures. All datasets can also be utilized to learn music

embeddings in order to unveil cross-cultural links between

acoustic features and tags.
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X. Serra, “A corpus for computational research of turk-

ish makam music,” in Proceedings of the 1st Interna-

tional Workshop on Digital Libraries for Musicology,

2014, pp. 1–7.

[22] A. Srinivasamurthy, G. K. Koduri, S. Gulati, V. Ishwar,

and X. Serra, “Corpora for music information research

in indian art music,” in Proceedings of the 2014 In-

ternational Computer Music Conference, ICMC/SMC;

2014 Sept 14-20; Athens, Greece, 2014.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

317
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