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ABSTRACT

We introduce Composer’s Assistant, a system for interac-

tive human-computer composition in the REAPER digi-

tal audio workstation. We consider the task of multi-track

MIDI infilling when arbitrary track-measures have been

deleted from a contiguous slice of measures from a MIDI

file, and we train a T5-like model to accomplish this task.

Composer’s Assistant consists of this model together with

scripts that enable interaction with the model in REAPER.

We conduct objective and subjective tests of our model.

We release our complete system, consisting of source code,

pretrained models, and REAPER scripts. Our models were

trained only on permissively-licensed MIDI files.

1. INTRODUCTION

Many generative models for music exist. For instance,

MuseNet [1] and SymphonyNet [2] can generate or con-

tinue a piece of music, and Music Transformer [3] can con-

tinue a piano performance or harmonize a piano melody.

When we tried using these tools as compositional aides,

however, we quickly ran into limitations. For instance,

while Music Transformer is capable of harmonizing a

given melody, it does not offer the ability to keep part of

the harmonization and regenerate the other part. MuseNet

and SymphonyNet can generate a continuation of a user’s

prompt, but do not allow the user to regenerate individ-

ual instruments or measures within the continuation while

keeping the rest of the continuation intact.

DeepBach [4] can perform infilling on Bach-like

chorales in a window specified by the user. Motivated

by the idea of extending the DeepBach user experience to

more styles, arbitrary collections of instruments, and arbi-

trary infilling target locations, we train a transformer [5, 6]

model on the task of multi-track MIDI infilling. Our model

allows composers to generate new notes for arbitrary sub-

sets of track-measures in their compositions, conditioned

on any contiguous slice of measures containing the sub-

set. (By a track-measure, we simply mean a measure

within a track—see Figure 1.) We also build a novel sys-

tem for interacting with our model in the REAPER digital
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Figure 1. A prompt in REAPER, followed by a model out-

put. Vertical lines separate measures. Users place empty

MIDI items in REAPER to tell the model in which mea-

sures to write notes, and track names to tell the model what

instrument is on each track. A track-measure in the prompt

is boxed. Our model writes at least one note into every

track-measure in every empty MIDI item in the prompt.

audio workstation (DAW). 1 Our system is cross-platform

and easy to install. When a user runs one of our REAPER

scripts, a model prompt is built directly from the slice

of measures selected in the user’s REAPER project, our

model evaluates the prompt, and the model output is writ-

ten back into the user’s project—see Figure 1. All of this

happens within a few seconds, allowing the user to listen

to the output, modify it to create a new prompt, generate

an output from that, etc. This allows our model to be used

in an interactive manner, where model outputs are refined

by the user over the course of several prompts.

We note that our infilling objective includes continuing

a piece of music, simply by including empty measures at

the end of the piece in the prompt. Additionally, our model

has the ability to write variations: One can randomly mask

1/n of the track-measures in a measure selection and ask

the model to fill in those parts, then feed the result back

into the model with another 1/n masked, and so on, until

1 Our system and video demo are available at https://github.
com/m-malandro/composers-assistant-REAPER.

327



all track-measures have been masked and filled.

Toward the end of this project we discovered MMM

[7,8], which consists of two separate GPT-2–like [9] mod-

els trained on the tasks of measure infilling and track in-

filling. The authors include code to use these models to

infill arbitrary subsets of track-measures, as we do. MMM

comes in 4-bar and 8-bar variants, which are limited to in-

puts with 12 and 6 tracks, respectively, and its web demo

is limited to inputs having a 4/4 time signature.

The primary contributions of this work are as follows.

First, in Section 3 we introduce a novel data filtering and

preprocessing approach, applicable to any MIDI dataset

used for training models. Our approach helps rectify cer-

tain issues we have encountered when using other mod-

els. Second, we train and release a new model, capable

of infilling arbitrary track-measures in an arbitrary slice of

measures in a MIDI file, with no effective restriction (aside

from a soft input token limit of 1650) on tempos, number

of measures, or number of instrument tracks. Tracks may

be polyphonic or monophonic in any combination. The

only time signature restriction is that all measures must be

eight quarter notes or fewer. Our model is more flexible

than MMM and compares favorably to MMM in both ob-

jective and subjective tests—see Sections 6–7. Addition-

ally, our model was trained only on permissively-licensed

MIDI files, so its outputs should be usable by composers

with minimal risk—see Section 5. Finally, we release our

complete system, including training code and scripts that

enable rapid interaction with our model in REAPER. Our

model is the first DAW-integrated model capable of infill-

ing parts for all 128 pitched MIDI instruments (including

repeated instruments) and drums, in any combination.

2. RELATED WORK

As mentioned in Section 1, MMM [7, 8] performs multi-

track infilling for all MIDI instruments (subject to bar and

track limits), and DeepBach [4] performs multi-track in-

filling for Bach-like chorales. Coconet [10] also performs

multi-track infilling for Bach-like chorales. MusIAC [11]

incorporates user controls and performs track-based and

measure-based infilling, although its inputs and outputs

are limited to a maximum of three tracks, 16 measures,

and four common time signatures. MusicVAE [12] can in-

terpolate between two given clips of music, which can be

viewed as a type of infilling. To our knowledge, all other

existing music infilling systems are limited to monophonic

infilling [13–17] or single-instrument infilling [18, 19].

Generating or continuing a piece of music can be seen

as a special case of infilling. Models which can generate

or continue a piece of music include [1–3, 20, 21].

Previous DAW-integrated generative music systems in-

clude [4,18,22]. NONOTO [23] is a model-agnostic inter-

face that can be linked with a model to perform interactive

measure-based infilling. This interface could potentially

be altered to allow for the expanded type of infilling our

model is capable of. However, we opt to build an inter-

face between our model and REAPER directly, essentially

using REAPER as the GUI for our model.

3. DATA FILTERING AND PREPROCESSING

In this section we describe our filtering and preprocess-

ing approach, any portion of which can be applied to any

dataset of MIDI files. First, we remove from the dataset

any file whose notes seem to have no relation to the un-

derlying grid (Section 3.1). Next, we dedupe files from

the dataset using note onset chromagrams (Section 3.2).

Finally, we preprocess all remaining files to standardize

properties like track order (Section 3.3). This final prepro-

cessing step includes a method for detecting and remov-

ing shifted duplicate and near-duplicate tracks within files

(Section 3.4).

3.1 Cosine Similarity for On-Grid Note Detection

Every MIDI file has a measure and grid structure defined

by tempo and time signature events. However, MIDI file

authors are free to ignore this structure, and frequently do

when recording free-flowing performances. Other mod-

els we have used occasionally write a note in the wrong

place—e.g., a 32nd note away from where it clearly should

be—and a small experiment we ran suggests that training

on MIDI files that don’t quantize well to the grid used by

the model is a major cause of this. To address this, we re-

move from our dataset any MIDI file whose note onsets ap-

pear to have no relation to the underlying grid. This is not

as simple as checking whether all (or most) note onsets oc-

cur on the grid, as many MIDI file authors who use the grid

include “humanization” of note timings, where many note

onsets that occur slightly off the grid nevertheless quantize

correctly to the grid. For instance, in a MIDI file with a res-

olution of 960 ticks per quarter note, a humanized quarter-

note performance might have notes occurring in a 40-tick

window centered at every 960th tick.

To perform this filtering, given a MIDI file M , we quan-

tize the note onsets in M to a resolution of 12 ticks per

quarter note, and we form a length-12 vector vM whose

ith entry (i ∈ {0, . . . , 11}) is the number of note onsets

in M occurring i ticks after a grid quarter note. The idea

is that if the note onsets in M have nothing to do with the

grid, then vM will point in a similar direction to the uni-

form vector v1 = (1, . . . , 1) ∈ R
12. We therefore compute

the cosine of the angle θM between vM and v1:

cos(θM ) =
⟨vM , v1⟩

||vM || · ||v1||
,

and we declare a threshold T such that when cos(θM ) > T
we remove the file M from our dataset. Hand exploration

indicated that T = 0.8 was a reasonable threshold, which

we chose for this project. We note that a straight fully-on-

grid 8th-note pattern M has cos(θM ) ≈ 0.41 and a straight

fully-on-grid 16th-note pattern M has cos(θM ) ≈ 0.58.

3.2 Deduping Using Note Onset Chromagrams

We dedupe our dataset to avoid data imbalance during

training and to prevent overlap between our training and

test sets. Given a MIDI file M , we compute a size-12 set

of note onset chromagrams using the following procedure.
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First, we remove all drum tracks from M . Then, using a

12-tick-per-quarter-note grid, we quantize the note onsets

in M to the nearest 16th note or 8th note triplet. Then,

we remove all empty measures at the beginning and end of

M , and we replace each set of contiguous empty measures

within M with one empty measure. Then, for each tick in

M and for each pitch class, we record whether M has at

least one note onset of that pitch class at that tick. This

information comprises one note onset chromagram for M .

The other 11 come from repeating this procedure for each

possible transposition of M . We dedupe the dataset by

keeping only one file with a given set of note onset chro-

magrams. Quantization helps us catch files that differ only

trivially in grid resolution and/or note onset times, while

transposition helps us catch files that differ only in key.

3.3 Preprocessing of Individual MIDI Files

After deduping, we preprocess each MIDI file in our

dataset in the following way.

First, we arrange the information in the MIDI file so that

each track holds notes for one instrument. We order tracks

according to their MIDI instrument number (0–127), tak-

ing drums as instrument 128. We also consolidate all drum

tracks to a single track, and we apply a drum simplification

map (consolidating, e.g., three different bass drum pitches

to a single pitch).

Next, we apply pedal information in the file (if present)

to extend note lengths, and then delete all continuous con-

troller (cc) data. We do not model cc data in this project.

With the exception of drums, we allow multiple tracks

to use the same instrument. However, when this happens,

if there is more than one track having a given instrument,

we remove all but one of those tracks that are equal to, a

shift of, or close to a shift of another track with the same

instrument, using the procedure in Section 3.4.

We impose the restriction that all measures must be

eight quarter notes or fewer. If any time signature in the

file declares longer measures, we alter the time signatures

to shorten the measures.

Finally, using a 24-tick-per-quarter-note grid, we quan-

tize the events in the file to the nearest 32nd note or 16th

note triplet. This is ultimately the level of quantization we

use to train our model. (Earlier experiments involved quan-

tizing to 16th notes or 16th notes + 8th note triplets, which

we found insufficient for expressive generation.)

3.4 Removing Shifted Duplicate and Near-Duplicate

Tracks

A MIDI file may contain duplicate tracks. Such tracks

contain no useful information for modeling, so we remove

them. Shifted duplicate tracks are frequently used by MIDI

file authors to encode delay effects (as the MIDI spec of-

fers no way to encode the use of a delay directly). Choos-

ing to use a delay is a mixing decision, not a compositional

decision, and we want our model to focus on making com-

positional decisions, so we remove shifted duplicate tracks

as well. We have also seen tracks that are duplicates or

shifted duplicates of other tracks within a file, plus or mi-

nus a few notes and/or humanization. We remove such

near-duplicate tracks as well.

Given a note n in a track T , let st(n) and end(n) in-

dicate the start and end times of the note n, respectively,

and let pitch(n) ∈ {0, . . . , 127} indicate the MIDI pitch of

n. We record, for p ∈ {0, . . . , 127}, the union of closed

intervals

IT (p) = ∪n∈T :pitch(n)=p{[st(n), end(n)]} ⊆ R,

and we define |IT | =
∑127

p=0 |IT (p)|, where |IT (p)| is the

sum of the lengths of the disjoint intervals in IT (p).
Given tracks T1 and T2, we define the overlap measure

O(T1, T2) ∈ [0, 1] ⊆ R to be

O(T1, T2) =

∑127
p=0 |IT1

(p) ∩ IT2
(p)|

max (|IT1
|, |IT2

|)
.

The idea is that O(T1, T2) measures the percentage of the

note intervals in the larger of the two tracks accounted for

by the note intervals in the smaller of the two.

We use a threshold of 0.9 for asserting near-overlap be-

tween two tracks. As we go through the tracks in a MIDI

file in order, a later track T is thrown out if there exists an

earlier track T0 using the same instrument such that some

shift Ts of T of no more than a half note has the property

that O(T0, Ts) ≥ 0.9. In our experience with our trained

model, we have found this preprocessing step sufficient to

prevent the model from outputting duplicates or shifted du-

plicates of tracks in its inputs.

4. OUR LANGUAGE

After applying the procedure from Section 3 to a collec-

tion of MIDI files, we process the files into an event-based

language for modeling. Our language is similar to the

standard event-based MIDI language used for piano per-

formance modeling in [3]. However, we use explicit mea-

sure tokens to denote the start of each measure. Also, we

do not model velocity of individual notes directly. Instead,

we assign a dynamics level to each measure based on the

average velocity of the notes in the measure. We use eight

dynamics levels, with thresholds learned from data.

The tokens used by our language are as follows:

• M:x, x ∈ {0, . . . , 7}. Declares a measure of dynam-

ics level x.

• B:x, x ∈ {0, . . . , 7}. Declares the tempo (BPM)

level at the start of a measure. We use eight tempo

levels, with thresholds learned from data.

• L:x, x ∈ {1, . . . , 192}. Declares that a measure has

length equal to x ticks.

• I:x, x ∈ {0, . . . , 128}. Changes the current instru-

ment to MIDI instrument x (128 = drums).

• R:x, x ∈ {1, . . . , 63}. Declares that the current in-

strument is the same MIDI instrument as another in-

strument in the file/project, but on a different track.

Higher x values indicate lower average pitch.
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Figure 2. We tokenize this measure as M:5 B:6 L:96 I:0

w:48 d:24 N:67 I:0 R:1 d:48 N:36 N:43 N:48 I:73 w:12

d:12 N:84 w:12 N:81 w:12 N:79. Note that piano and flute

are MIDI instruments 0 and 73.

• N:x, x ∈ {0, . . . , 127}. Note of pitch x. Used by

instruments 0–127.

• D:x, x ∈ {0, . . . , 127}. Drum hit of drum pitch x.

Used by instrument 128.

• d:x, x ∈ {0, . . . , 192}. Sets the duration of each

note declared from this point forward to x ticks.

• w:x, x ∈ {1, . . . , 191}. Advances the current inser-

tion point for new notes in the measure by x ticks.

• <extra_id_x>, x ∈ {0, . . . , 255}. Mask tokens.

• <mono>, <poly>. Instructs the model to write a

monophonic or polyphonic part for a masked part.

For our purposes a monophonic part is one where no

two notes in the part have the same onset tick.

Tokens are assembled in a standardized manner to rep-

resent measures. Each measure begins with M:x, B:x, and

L:x tokens. I: commands are included for a measure only

when that instrument is present in the measure. We do not

intermingle instrument note instructions as we write each

measure from left to right (as MuseNet [1] did), as that

would make it difficult to mask individual instrument parts

within measures. Rather, we write the full part for one in-

strument within the measure before writing the full part for

the next instrument within the measure. Figure 2 contains

an example of a tokenized measure.

To form songs, we simply concatenate measures.

5. MODEL, DATA, AND TRAINING PROCEDURE

We use recent recommendations from the language mod-

eling community to design and train our model. Based

on the recommendations in [24–26], we choose a T5

(full, relative-attention) encoder-decoder architecture [6].

We opt for a full attention model because such models

were found to outperform memory-efficient models in [24]

when the full input sequence fits in memory, as we expect

to be the case in most real-world applications of our model.

Also, we adopt the DeepNarrow strategy of [27], opting

for a model dimension of 384, 10 encoder layers, and 10

decoder layers. For training, we use the pytorch [28]

Hugging Face [29] implementation of T5. For inference,

we use nucleus sampling [30] with a threshold of p = 0.95.

To train a model that is essentially free of copyright

worry, we collect MIDI files from the internet marked

as being in the public domain, freely available to use

without attribution, or available under a CC BY license.

We exclude files marked as having share-alike or non-

commercial licenses, since we want composers to be able

to use model outputs however they wish. We also collect

private donations and files from the internet for which we

secure direct permission from the MIDI file authors to use

for training. This results in a dataset of approximately 40K

MIDI files after filtering. Most of our training files are in

Western classical, folk, and hymnal styles, although some

modern styles are also present.

We follow the standard approach to the training of large

language models of splitting our training procedure into

pretraining and finetuning phases. A similar approach was

also used in [31]. For pretraining, we use the T5 corrupted-

span sequence-to-sequence objective [6]. We begin by pre-

training on the 192K training files in the CocoChorales

[32] dataset and their piano reductions for three epochs.

The CocoChorales are only used for this initial pretraining

to teach the model the basics of music theory and our lan-

guage. We then move on to our dataset of 40K MIDI files.

After tokenization and corruption, we greedily chunk each

song into inputs of 512 or fewer (short) or 1650 or fewer

(long) tokens. Additionally, each song in our dataset is

transposed a random amount between -5 and +6 semitones

(inclusive) for each epoch. Following the recommenda-

tions in [24], we train our model on short examples for 20

epochs and then long examples for 11 epochs. We release

the resulting pretrained model, which others may find use-

ful for finetuning on downstream tasks.

For finetuning, we continue to leverage the corrupted-

span sequence-to-sequence objective to finetune our model

on the task of multi-track MIDI infilling. We create train-

ing examples from songs in our training dataset by taking

slices of measures from the songs and masking subsets of

track-measures from these slices. During finetuning ev-

ery N:, D:, d:, and w: token for a given track-measure

is masked, and corresponds to a single mask token. With

probability 0.75, we add a <poly> or <mono> token cor-

responding to the nature of the masked tokens for each

mask. (We choose not to include these tokens in every

training example since users will not always include these

instructions in their prompts.) Finetuning examples are

limited to inputs with a maximum of 1650 tokens and out-

puts with a maximum of 1650 tokens.

We generate our finetuning masks by selecting from

mask patterns that we consider to be musically relevant

and/or useful for training. To help train our model for use

on small numbers of measures, we also occasionally (15%

of the time) truncate examples to a random smaller number

of measures than the number allowed by our token limits.

As with pretraining, each example is transposed randomly.

We finetune our model for 51 epochs, and we release the

resulting finetuned model.
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Task Our Model Our Model -MP MMM-8 MMM-4

Note F1 results. Higher is better.

8-bar random infill 0.5414 ± (0.1887)a 0.5315 ± (0.1904)b 0.4153 ± (0.1819)c 0.4025 ± (0.1652)d

16-bar random infill ∗ 0.5771 ± (0.1661)a 0.5705 ± (0.1669)b 0.4133 ± (0.1534)c 0.4059 ± (0.1399)d

8-bar track infill 0.179 ± (0.1902)a 0.1634 ± (0.18)b 0.1063 ± (0.1573)d 0.1427 ± (0.1646)c

16-bar track infill 0.1773 ± (0.1752)a 0.1609 ± (0.165)b 0.1107 ± (0.1383)d 0.1467 ± (0.1489)c

8-bar last-bar fill 0.5019 ± (0.2719)a 0.5063 ± (0.2751)a 0.4329 ± (0.2445)b 0.3756 ± (0.2289)c

16-bar last-bar fill ∗ 0.5415 ± (0.2853)a 0.539 ± (0.2823)a 0.4338 ± (0.2468)b 0.3818 ± (0.2293)c

Pitch class histogram entropy difference results. Lower is better.

8-bar random infill 0.2845 ± (0.1627)a 0.2948 ± (0.1597)b 0.3045 ± (0.1561)c 0.3049 ± (0.1497)c

16-bar random infill 0.2691 ± (0.1325)a 0.2797 ± (0.1326)b 0.3093 ± (0.124)c 0.3063 ± (0.1138)c

8-bar track infill 0.3933 ± (0.3032)c 0.42 ± (0.3134)d 0.2864 ± (0.2966)a 0.3021 ± (0.2517)b

16-bar track infill 0.3842 ± (0.2654)c 0.3995 ± (0.2763)c 0.284 ± (0.2348)a 0.3036 ± (0.2072)b

8-bar last-bar fill 0.3018 ± (0.2661)a 0.3072 ± (0.2692)a 0.3213 ± (0.2602)b 0.3439 ± (0.2777)c

16-bar last-bar fill ∗ 0.2851 ± (0.2652)a 0.2925 ± (0.2672)a 0.3209 ± (0.2619)b 0.3454 ± (0.2741)c

Groove similarity results. Higher is better.

8-bar random infill 0.9534 ± (0.0298)a 0.9519 ± (0.0306)b 0.9333 ± (0.0369)c 0.9314 ± (0.0364)d

16-bar random infill ∗ 0.956 ± (0.027)a 0.9552 ± (0.0275)b 0.9323 ± (0.0337)c 0.9317 ± (0.032)c

8-bar track infill 0.9115 ± (0.0592)a 0.9069 ± (0.0617)b 0.8921 ± (0.0695)d 0.8987 ± (0.0626)c

16-bar track infill 0.9113 ± (0.0547)a 0.9082 ± (0.0553)b 0.8946 ± (0.0561)d 0.9011 ± (0.0536)c

8-bar last-bar fill 0.9517 ± (0.0414)a 0.9524 ± (0.0411)a 0.9381 ± (0.045)b 0.9334 ± (0.0457)c

16-bar last-bar fill ∗ 0.9544 ± (0.0481)a 0.9542 ± (0.0424)a 0.938 ± (0.051)b 0.9339 ± (0.0475)c

Table 1. Objective infilling summary statistics. All cells are of the form mean ± (std dev)s, where s is a letter. Different

letters within a row indicate significant location differences (p < 0.01) in the samples for that row according to a Wilcoxon

signed rank test with Holm-Bonferroni correction. Asterisks (∗) indicate a significant performance difference (p < 0.01)

between a 16-bar task and the 8-bar task in the previous row for our model according to a Wilcoxon rank sum test.

6. OBJECTIVE EVALUATION OF OUR MODEL

To form our test set, we select a set of 2500 MIDI files from

the Lakh MIDI dataset [33, 34] that is disjoint (according

to the procedure in Section 3.2) from our training set, all in

4/4 time and having at least 16 measures. Given a MIDI file

in our test set, for each of the three mask patterns below,

we select an 8- and a 16-measure slice of the file and mask

the selected slice with that mask pattern. We thus generate

six test examples from each test file, corresponding to the

six different tasks on which we evaluate models. Given a

slice of measures, our mask patterns for testing are:

1. Random mask: Each track-measure in the slice is

masked with probability 0.5.

2. Track mask: Up to half of the tracks t are selected

at random from the slice, and every measure of each

such track t is masked.

3. Last-bar mask: Given the last measure m of the

slice, measure m of every track is masked. This

pattern is used to measure the ability of models to

continue songs.

The ground truth for each example consists of the masked

notes in the example. In our test data, 99% and 75% of our

8-measure and 16-measure prompts (respectively) encode

to 1650 or fewer tokens. When input prompts are longer

than 1650 tokens, we chunk the prompts prior to evaluating

them with our model.

To compare our model to MMM [7, 8], we modify the

MMM Colab worksheet to run our examples through the

MMM models in batches. We recreate our test exam-

ples, quantizing them from their underlying MIDI files

to MMM’s 12-tick-per-quarter-note resolution, and then

modify them to accommodate the restrictions of the MMM

models: Since the 4-bar and 8-bar MMM models are lim-

ited to inputs containing a maximum of 12 and 6 tracks,

respectively, we chunk each test example into 4-bar and 8-

bar chunks, and then we split each chunk into sub-chunks

consisting of up to 12 and 6 tracks. The MMM models

have a strict input + output token limit of 2048, so when

sub-chunking, we only add enough tracks to a sub-chunk

to ensure that the input + ground truth has no more than

2048 tokens. This biases the comparison in favor of the

MMM models somewhat, as this requires us to look at the

length of the ground truth as part of the input chunking

procedure. Also, our test set is contained in MMM’s train-

ing set, but there is no reasonable way to avoid this as the

MMM models were trained on the full Lakh MIDI dataset.

(We wanted a diverse and well-randomized test set, and the

Lakh MIDI dataset is the only publicly-available dataset

we are aware of that fits this bill.)

We evaluate models with standard metrics: Note F1

[35], average pitch class histogram entropy difference

[19, 36], and average groove similarity [19, 36]. Note F1

measures how closely the generated notes match, on a

note-for-note basis, the notes in the ground truth. (For our

purposes, a generated note matches a note n in the ground
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Real Music Our Model MMM

1st place 66 32 27

Avg rank 1.664 2.032 2.304

p-values Our Model MMM

MMM 0.0239 -

Real Music 0.0034 2.3 · 10−5

Table 2. Subjective results from our listening test.

truth if and only if its onset tick, measure, pitch, and track

match exactly those of n.) The other metrics measure how

well certain higher-level statistics of the generated notes

match those of real music. For pitch class histogram en-

tropy calculations, drums are ignored. Each metric is com-

puted on a per-example basis, and then for each model,

task, and metric, the 2500 results are averaged to give the

results in Table 1. For fairness of groove similarity com-

parison, we use a denominator of 48 for all models. (This

is reasonable, as our models and the MMM models both

effectively have 48 possible note onset positions per 4/4

measure.) For our model, “-MP” indicates that the exam-

ples were evaluated without <mono> or <poly> tokens

present.

For each row of Table 1, we perform a Wilcoxon signed

rank test [37] with Holm-Bonferroni correction [38]. We

find significant differences between our model and the

MMM models in all 18 rows, with our model outperform-

ing the MMM models in 16 out of 18 rows. The MMM

models outperform our model only for pitch class his-

togram entropy difference for full-track infilling.

Additionally, we find a significant difference in our

model’s performance when <mono> and <poly> tokens

are included in prompts in 11 out of 18 rows. All signif-

icant differences favor including these tokens, suggesting

that the development of additional user controls (as in [11])

would be a useful line of future work.

Finally, a Wilcoxon rank sum test [37] reveals signifi-

cant differences (p < 0.01) in 8-bar versus 16-bar results

for our model in five out of nine comparisons. All sig-

nificant differences favor the 16-bar results, emphasizing

the importance of training on longer measure slices. How-

ever, we never observe a significant difference in 8-bar ver-

sus 16-bar results for track infilling, suggesting that larger

context windows generally provide no additional useful in-

formation for completing this particular task.

Additional experiments not reported here indicate that

scaling our training approach (training larger models on

more data) is a feasible path for improving model perfor-

mance on the metrics presented here.

7. SUBJECTIVE EVALUATION OF OUR MODEL

While the results in Section 6 are encouraging, the ground

truth may not reflect the only reasonable way to fill in miss-

ing notes. To help address this, we conducted a small lis-

tening test with 25 participants. We prepared nine exam-

ples mostly involving melodic generation. Each example

consisted of three 8-measure clips, one of which was real

multi-track music. The other two clips were created by

removing some tracks from the real music and using our

model and MMM to fill those tracks. Participants were

shown five of the nine examples at random, and for each

example were asked to rank the three clips in order of pref-

erence. Results are given in Table 2.

A Wilcoxon signed rank test with Holm-Bonferroni cor-

rection reveals significant differences in rankings between

all three types of music, with p-values given in Table 2. In

this test we see a clear preference for real music, and a sig-

nificant (p < 0.05) preference for music generated by our

model over music generated by MMM. One expert partic-

ipant commented that melodies generated by the models

were generally more directionless than those in real music,

often failing to drive towards a cadence or “payoff.” We

agree with this assessment, and this is a shortcoming of

our model that we hope to address in future work.

8. LIMITATIONS AND RISKS

Our model writes music that is reflective of its training set.

Most of our training files are in Western classical, folk, and

hymnal styles. While we included in our training set only

files marked as being permissively licensed, it is possible

that some files were mismarked. It is also theoretically

possible for our model to output copyrighted music, even

if such music was not present in the training set.

The most common request we have heard from com-

posers to whom we have shown our system is personaliza-

tion. Generally speaking, they do not want systems that

write full songs, and they do not want systems that write

“generic” music. Rather, they want systems that can sug-

gest ideas in their style. Some small experiments indicate

that our finetuned model can be personalized by individu-

als (by continuing to finetune the model on their own MIDI

files) to write in their styles. Low-rank adaptation [39] of

our model may also be possible. Personalization is an av-

enue we would like to explore formally in future work. For

now, our code supports training by users, and our model di-

mensions were chosen carefully to enable this on consumer

hardware. A video card with 6 GB of RAM is sufficient to

train our released model on examples with input and out-

put lengths of 1024, and 12 GB of RAM is sufficient to

train on examples with input and output lengths of 1650.

While this can benefit composers who wish to use our sys-

tem, there is also the risk that our models may be trained

by users to impersonate the styles of others.

9. CONCLUSION

We have introduced Composer’s Assistant, a system for

interactive human-computer composition in the REAPER

digital audio workstation. Composer’s Assistant performs

multi-track MIDI infilling and comes with an easy-to-use

interface. We have released our source code, a pretrained

model, a finetuned model, and scripts for interacting with

our finetuned model in REAPER. Our models were trained

only on permissively-licensed MIDI files.
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