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ABSTRACT

Music retrieval and recommendation applications often

rely on content features encoded as embeddings, which

provide vector representations of items in a music dataset.

Numerous complementary embeddings can be derived

from processing items originally represented in several

modalities, e.g., audio signals, user interaction data, or ed-

itorial data. However, data of any given modality might

not be available for all items in any music dataset. In this

work, we propose a method based on contrastive learning

to combine embeddings from multiple modalities and ex-

plore the impact of the presence or absence of embeddings

from diverse modalities in an artist similarity task. Experi-

ments on two datasets suggest that our contrastive method

outperforms single-modality embeddings and baseline al-

gorithms for combining modalities, both in terms of artist

retrieval accuracy and coverage. Improvements with re-

spect to other methods are particularly significant for less

popular query artists. We demonstrate our method success-

fully combines complementary information from diverse

modalities, and is more robust to missing modality data

(i.e., it better handles the retrieval of artists with different

modality embeddings than the query artist’s).

1. INTRODUCTION AND RELATED WORK

The MIR community has dedicated significant effort

to defining and computing music similarity in the last

20 years. Music similarity can be used in multiple down-

stream tasks, from playlist continuation, music visualiza-

tion/navigation, music categorization for organizing cata-

logs, or for personalized recommendations. The notion of

similarity is subjective and there is no consensus on how to

define and evaluate it [1]. To evaluate the performance of a

music similarity algorithm, some previous works either fo-

cus on content-based aspects, such as melody or harmony.

Other works measure similarity based on cultural aspects,

such as based on the co-occurrence of items in playlists or

on editorial data –this is the approach of our work.
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Multiple methods have been proposed to compute mu-

sic similarity based on a variety of data types related to the

music, e.g., based on audio descriptors [2], document sim-

ilarity [3], or graphs of musical connections [4, 5]. Some

relatively recent works propose ways to produce embed-

dings –that can be used to compute music similarity– in

a supervised or unsupervised way, by training models on

large amounts of data (such as audio, text or image). Such

pre-trained models, which are often released publicly, may

produce feature representations –i.e. embeddings– that are

effective for previously unseen tasks. Such embeddings

can be computed from diverse types of modalities related

to music such as audio [6–8], tags [9], album covers im-

ages [10], or biographies [4]. The multiple modalities of

data that can describe a music item –such as audio, tags,

or listening interactions– may contain complementary in-

formation. For example, the quality and scale of audio vs

collaborative data has been shown to have significant influ-

ence in autotagging tasks [11]. It therefore appears bene-

ficial to combine diverse complementary modalities to ob-

tain a more informative representation of music items. In

fact, recent research identifies the combination of diverse

sources of data as specially promising for mitigating limi-

tations and issues in music recommendation research [12].

Another aspect to take into account is that in any given

music dataset, data of diverse modalities might be avail-

able for different subsets of items. Therefore, when query-

ing with an item represented in a given modality, the max-

imum coverage for retrieval is limited to items for which

that same modality is available, leaving out a potentially

significant –and relevant– part of the dataset. For example,

the availability of listening interactions or users’ explicit

feedback is highly dependent on item popularity. There-

fore, for artists with very little listening and user feed-

back, it may not be possible to obtain embeddings from

that modality. Embeddings from other modalities may suf-

fer from the same issue, either because there is no data

available to produce an embedding or because the quality

of the available information is very low. For instance in

the case of a model trained on tag annotations to produce

artist embeddings, where the output embedding may not

be very informative for those artists that have a single or

few tag annotations. Such issues are particularly common

and problematic emerging or more underground artists, for

which the available information is more limited.

In order to mitigate the issue of availability of some

modalities, it is important to combine and take full ad-
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vantage of all information available so that when querying

with an artist that has only one modality available, we can

also retrieve artists for which we have a different modal-

ity information. Therefore, the focus of this work is to

combine diverse modalities into a common shared space

that is beneficial for 1) leveraging each modality informa-

tion from the artists, and 2) allowing to operate on a single

space that covers the full population of artists, ensuring

that whether or not an artist is retrieved for another does

not depend on the number of modalities available.

The problem of combining embeddings from diverse

modalities in a shared representation has received some at-

tention in the last few years. In the music domain, there

have been some works on combining embeddings by sim-

ple concatenation [13] or predicting one modality from an-

other [14]. Contrastive learning techniques go beyond sim-

ple concatenation or prediction, trying to learn a shared

representation between embeddings from different modal-

ities. Some examples of research related to multimodal

contrastive learning can be found in [10], where embed-

dings from a shared multimodal space are used as ad-

ditional features for classification, or in [15, 16] where,

e.g., music audio can be retrieved from natural language

descriptions. In this work, we propose to apply a con-

trastive learning method that maps embeddings from di-

verse modalities to a shared embedding space, extending

the advantages of multiple modalities to populations that

would not be covered otherwise.

In summary, in this work we propose an approach to

combine the multiple encoders of a contrastive learning

method, showcasing several improvements over baselines

and single-modality approaches in an artist similarity task.

We show under two different contexts –using an open and

an in-house dataset– that our proposed approach:

• achieves higher performance in terms of accuracy

and coverage of retrieved artists (§ 3.1),

• successfully combines complementary information

from diverse modalities (§ 3.2),

• is more robust to missing modality data (§ 3.3),

• particularly increases the performance for less pop-

ular query artists (§ 3.4).

2. METHODOLOGY

2.1 Single-Modality Embeddings and Contrastive

Method

In this work, we use three modalities, namely: tags, user-

listening interactions (i.e. collaborative filtering data, re-

ferred to as CF), and audio information. In all cases, we

use pre-trained models to obtain embeddings for each of

the modalities. We evaluate artist similarity performance

using the embeddings from the pre-trained models directly,

and compare to the performance when using the embed-

dings produced by our contrastive method which is trained

with the same embeddings from pre-trained models.

In these experiments we apply a contrastive learning

loss based on InfoNCE [17]. Specifically, we define the

contrastive loss between two modalities, ψψψa and ψψψb, as:

Lψψψa,ψψψb
=

M∑

i=1

− log
Ξ(ψψψi

a
,ψψψi

b
,τ)

2M∑

k=1

⊮[k ̸=i]Ξ(ψψψi
a
,ζζζk,τ)

, where M is the

batch size and τ is the temperature parameter. We define

Ξ(a,b, τ) = exp(cos(a,b)τ−1), based on the cosine sim-

ilarity. ζζζk is defined as ψψψka, if k ≤ M and else ψψψk−Mb .

This loss function attempts to minimize the distance be-

tween the modalities of the same artist while maximizing

the distance with any modality from other artists.

We use three encoders –one for each modality– that

will produce three representations in our shared space for

each artist. During training 1 we minimize the sum of the

pairwise losses between each of the modalities as in [18]:

Ltot = LAudio-Tag + LAudio-CF + LTag-CF

Once the model is trained with the contrastive method

and we want to use it for inference, for a given artist, we

aggregate the output of each internal encoder by averaging

all available information.

2.2 Training Data

In order to investigate the effectiveness of our contrastive

method under different situations, we train our model us-

ing two independent datasets: We use a dataset based on

public data to facilitate the reproducibility of some of the

results. And we also use an in-house dataset that contains

multimodal information for a larger set of artists.

Training our model requires full coverage of the three

modalities for all artists –tag-based embeddings, CF em-

beddings, and audio embeddings. For the public dataset,

we use the Million Song Dataset (MSD) [19] and its con-

nections with other datasets to collect tags, audio and CF

embeddings. We collected audio track embeddings using

the public unsupervised model from [6] to extract embed-

dings from MSD audio previews, then we averaged all au-

dio tracks embeddings for each artist. The tagging data

was collected from the MSD500 dataset [11] and embed-

dings were computed using PMI factorization [13] of 500

tags. The CF embeddings were obtained using weighted

matrix factorization [20] based on the Echonest Profile

dataset, 2 with Gaussian process-based Bayesian hyperpa-

rameter tuning [21]. We gathered information from the

three modalities for 17, 478 artists.

For the in-house dataset (hereafter, OWN) we collected

tags, CF, and audio information for 38, 301 artists. This

dataset is larger than MSD and includes what we believe

is higher-quality tags and CF data, which allows us to

compare the performance of our approach in a different

setting. The CF information is computed from very large

amounts of user-listening interactions on a streaming plat-

form. The audio embeddings are computed using the su-

pervised model 3 described in [6]. The tag embeddings are

1 For both datasets we use Adam optimization with a learning rate of
0.0001 and temperature of 0.1. We use a fully connected layer of 256 for
the CF encoder, two layers with 512 and 256 for the Audio encoder and
4 attention heads of 256 for the tag encoder. The learned space has 200
dimentions. Batch size for COWN is 2048 and for CMSD is 128.

2 Specifically, we aggregated the per-song listening counts correspond-
ing artists such that we obtain the ‘user-artist’ listening matrix.

3 i.e. a different model for audio embeddings than when training on
MSD.
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computed using PMI factorization from a total of 6, 421
different tags, which are a combination of manual and au-

tomatic annotations. Since our pre-trained models for au-

dio and CF are at the track level, we compute artist embed-

dings by averaging over artist track embeddings.

In the remainder of this work, we refer to the model

trained with the contrastive method with in-house data as

COWN and the model trained with public data as CMSD.

2.3 Evaluation Dataset

The ground truth for artist similarity is defined herein by

the OLGA public dataset [22], containing artist similarity

information collected from AllMusic. Our evaluations are

therefore based on a cultural ground-truth, following [5].

We collected data from the MSD dataset for the orig-

inal 17, 646 artists in OLGA. We obtained tag data from

the MSD500 for 10, 971 (62%) artists, user interaction

data from the Echonest Profile dataset for 15, 389 (87%)

artists, and audio embeddings using MSD audio previews

for 100% of the artists. 4

We also create a subset of OLGA where all artists con-

tain complete tags, user interaction, and audio information

from MSD. We refer to this subset as OLGA Full Modal-

ity Coverage (FMC), which contains 9, 474 artists and it

is also mapped to our internal dataset. The OLGA FMC

subset is used to compare the results of multiple methods

pre-trained on different and independent datasets.

2.4 Evaluation Conditions

In order to provide insights on the performance of the con-

trastive method, we conduct analyses under 3 different sit-

uations, varying the degree of availability of the different

modalities in the evaluation data:

Raw evaluation dataset: In one condition, we compare

the methods using all the artists in the OLGA dataset. In

this case, we are interested to understand performance in

a scenario of a real –uncontrolled– evaluation dataset, ac-

counting for some organic imbalance of the availability of

data in different modalities.

Full Modality Coverage: In another condition, we use the

OLGA FMC subset where all artists contain CF, tags, and

audio embeddings in both MSD and OWN datasets. In this

case, we want to understand performance while factoring

out the potential influence of one or another modality being

only partially available in evaluation.

Systematic variation of modality coverage: We also

perform multiple comparisons by grouping artists from

OLGA depending on how many modalities are available.

Here, we want to look at how much the contrastive method

and the baselines are capable of doing cross-modality re-

trieval when using different modalities as input. In par-

ticular, we want to see whether or not they are capable of

retrieving artists that have different modality information

4 Note that we don’t control for artist separation between MSD, OWN
and OLGA. But even if some artists may be present in both train and
test sets, the artist similarity information from OLGA is only used for
evaluation, and is never used during the training of the single-modality
embeddings nor the contrastive models on either MSD or OWN.

available compared to the query artists. Therefore, in this

part, we create 7 groups of artists –at random– of equal size

with each group containing one, two, or three modalities

(namely, CF, audio, tag, CF+audio, CF+tag, audio+tag,

audio+CF+tag). We refer to these groups as ‘Modality

Groups’. It is important to highlight the artificiality of this

setting. We are considering an extreme case only to eval-

uate cross-modality retrieval capabilities of the methods.

We are not considering here the accuracy of these results

since it is already evaluated in the other analyses.

2.5 Baseline multimodal approaches

For multi-modal baselines, we employ two conventional

models: PCA, and Gaussian random projection [23,

24] (which we refer to as Rand). 5 For fitting these models,

we consider artists who have access to all modalities. Their

multimodal embeddings are concatenated and treated as a

single feature vector. It yields a dimensionality of 2, 063
for the MSD dataset, and 2, 528 for the OWN dataset. We

set the reduced dimensionality to 200, which is the same

size as the embeddings of the contrastive model. If an artist

has a missing modality in the prediction phase, we employ

the global mean embedding of the missing modality. 6

2.6 Metrics

Accuracy: We consider nDCG@200 to measure how ac-

curate the retrieved artists are compared to the ground truth

while taking into account the position in the ranking of the

retrieved artists, a metric considered robust to missing rel-

evance information [26]. 7

Distribution: We also compute the Gini@200 index, mea-

suring the distribution of the top 200 retrieved artists in

each experimental condition across the whole set of artists.

A lower value of Gini indicates that the recommendations

across artists are more uniformly distributed –covering

more artists retrieved– while a higher value of Gini indi-

cates that the recommendations are focused on only the

few same artists.

We compute the confidence interval using the bootstrap

method [27] on the evaluation artist population. We report

them in Figure 1 at 95% confidence level.

Expected Contrastive Loss: We propose an additional

metric that we named Expected Contrastive Loss (ECL).

We use this measure to analyze to what extent an artist

is coherent with respect to their multimodal representa-

tions. From how we defined the loss in Section 2.1, a

high loss value implies that the artist is relatively diffi-

cult to be distinguished from other artists. Once the train-

ing is reasonably progressed, we employ ECL to quan-

tify how “coherent” the artist is with respect to their in-

ternal representations obtained from the different modali-

ties, which is defined as: ECL(i, u, v) = duvii −Ej\i[d
uv
ij ],

5 For both algorithms, we employ the standard implementation pro-
vided from scikit-learn [25].

6 This does not happen in FMC
7 We focus on nDCG@200 in this work, as we experimentally ob-

served high correlation with other retrieval metrics such as precision, re-
call, and R-Precision.
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where i and j denote artist index, while u and v refer to

the modality index. duvij means the cosine distance be-

tween artist i from modality u and artists j from modal-

ity v. Taking expectation over all the possible modal-

ity pairs leads to the final coherency measure for artist i:

ECL(i) = Eu,v\u[ECL(i, u, v)].

Clustering: We further analyze the multimodal embed-

ding space of the contrastive model, by investigating how

well the artist embeddings are clustered. The contrastive

method essentially can be seen as a “supervised” cluster-

ing task, where we minimize the distance among “posi-

tive points” (i.e., multimodal embeddings from an artist)

and maximize the distance between those to the “negative

points” (i.e., embeddings belonging to the other artists). It

implies that an artist will get a higher training loss when

the embeddings are dispersed and overlapped with the em-

bedding cluster of other artists, while the opposite cases

will get lower values. The model will fit the multimodal

embedding space such that the artist embeddings poorly

clustered initially have more concentrated and distant clus-

ters. While the contrastive learning implements this natu-

rally by its loss function, there are other well-known mea-

sures for the validation of the clustering methods, such as

intra-cluster distance (CDintra) indicating how an artist

embeddings are well clustered together, and inter-cluster

distance (CDinter) indicating how an artist-specific em-

bedding cluster is far and distinct from others’. 8

3. RESULTS

3.1 Performance comparison of contrastive method

We now look at the performance of the contrastive method

when some modality information is missing in the evalu-

ation dataset (using the raw OLGA dataset) and when all

modalities are available for each artist (FMC subset). We

also compare the performance of the contrastive method to

the baseline methods and to single-modality embeddings.

3.1.1 Performance with incomplete modality information

Focusing on the different combinations of input modali-

ties to the contrastive method, we can see in Table 1 that

the highest nDCG result is obtained when combining all

modalities as input. We therefore focus only on this model

for the remainder of the work.

Figure 1a shows the results for all artists in OLGA.

We can see that when using features from MSD, the con-

trastive method outperforms the baselines and the original

embeddings in all the metrics. The contrastive method al-

ways gives a better Gini compared to the other methods

–which means that the distribution of retrieved artists is

more uniform– while outperforming the other models in

nDCG. 9

8 we compute CDintra as the mean cosine distance between multi-
modal embeddings of an artist to their centroid in the multimodal space
of learned contrastive model. CDinter is computed as the mean distance
between the centroids of target artist and of all the other artists.

9 OWN-OGLA is omitted since we observe a similar behaviour.
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Figure 1: Performance comparison between contrastive

and other methods. Training with MSD (a and b) or with

OWN (c), Evaluation on OLGA (a) or on FMC (b and c).

OLGA FMC

nDCG@200 Gini nDCG@200 Gini

CA+CF+T 0.2387 0.2264 0.3560 0.1666

CA+T 0.2282 0.2035 0.3407 0.1559

CA+CF 0.1381 0.3425 0.2319 0.1873

CCF+T 0.1781 0.3467 0.3082 0.1917

CA 0.2338 0.1857 0.3471 0.1353

CT 0.1232 0.4939 0.2554 0.1745

CCF 0.1381 0.3425 0.2319 0.1873

Table 1: Evaluation of the contrastive method trained with

MSD data using all combinations of modalities for OLGA

dataset and FMC subset.

3.1.2 Performance with complete modality information

When we look at the results with Full Modality Coverage

(Figures 1b and 1c), the contrastive method outperforms

the baselines and the pre-trained models in all the metrics

both when trained with MSD data or with OWN data.

When looking at baseline performance between OLGA

and FMC (Figures 1a and 1b), we can see that in the

latter, baselines are relatively close to the best single-

modality embeddings, but in the former (i.e. with incom-

plete modality information) their performance drops sig-

nificantly lower than the best single-modality embeddings.

This is something we do not observe with the contrastive

method, which suggests that the baseline models are more

limited in the capabilities of retrieving artists that miss

some of the modalities from the query artist, while our con-

trastive method may be more robust to missing modality

information. We investigate this further in Section 3.3.

3.2 Combining complementary modality information

If we focus only on the single-modality approaches, and

MSD pre-training, Audio gives the best single-modality

performance in both OLGA and FMC (Figure 1a and 1b).

On the other hand, when pre-trained with OWN, CF is

slightly better than Audio and Tag (Figure 1c). These re-

sults suggest that performance is highly dependent on the

quality of the data used to pre-train the single-modality

embeddings. Results from Figure 1b and 1c also sug-
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Audio CF Tag Rand PCA CMSD COWN

Entropy 0.76 0.79 0.79 0.73 0.96 1.86 1.59

Table 2: Entropy of each model for Modality Groups.

Higher values indicate better distributed retrieved artists.

(a) Contrastive - MSD training (b) Contrastive - OWN training

(c) PCA - MSD training (d) PCA - OWN training

Figure 2: Analysis of modality-group dependency ratio

when restricting the information available for each group

to one, two, or three modalities. Rows indicate the groups

used to make the queries and the columns are the groups of

retrieved artists. Darker green indicates a higher concen-

tration of the retrieved artists in that cell. The color scale

is normalized across all figures. Groups of artists are ran-

domized, so an ideal situation is a homogeneous color in

the full matrix.

gest that, whichever single-modality embedding is best,

our contrastive method is able to successfully build on top

of it and still gain in performance by combining comple-

mentary information from other embeddings.

3.3 Robustness to missing modality data

In this subsection, we further analyze how the contrastive

method would be able to retrieve artists depending on the

available information for the query artists and the candi-

dates for retrieval. In Figure 2, we can see how artists

are retrieved from each of the Modality Groups when only

considering the top 5 results for each query artist. Typ-

ically we see that with the contrastive method, the same

group used for query comprises between 15-38% of the

retrieved artists. We see however an exception for the

CF group which obtains a larger portion of the retrieved

artists (59%) when using OWN data to train the models.

When we do a similar comparison for the PCA baseline

method, we see in Figure 2 that there are higher percent-
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Figure 3: Scatter plot of artists based on the popular-

ity proxy measure and the ECL. Each point represents an

artist, where the color brightness represents the per-artist

retrieval performance (nDCG@200). It is computed on the

FMC subset with MSD data.
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Figure 4: Relative retrieval improvement against CF

modality. The x axis represents the grouped popularity

quantile in 20 levels, meaning the first group includes

artists whose popularity is under 5% percentile, while the

top 5% popular artists belongs to the last group. The y axis

is proportional improvement of nDCG@200 compared to

the CF embedding model. The dotted horizontal line indi-

cates the retrieval performance of CF modality. FMC and

OLGA are evaluation datasets. MSD and OWN are train-

ing conditions.

ages in the diagonal of the matrix. This indicates that most

of the retrieved artists are concentrated in the same modal-

ity group used to make the query. Therefore, these results

highlight the difficulty for the PCA baseline method to re-

trieve artists beyond the query artist’s modality.

In Table 2 we compare the entropy of each model for the

Modality Groups. A higher entropy indicates that retrieved

artists are better distributed across the different modality

groups, i.e. that retrieval is less biased by the query modal-

ity –or more robust to partial modality data in the query.

We can see that the contrastive model is more robust to

missing modality data than the single-modality embed-

dings and the baseline approaches to combining modali-

ties. This is true when trained with MSD or with OWN.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

379



3.4 Effect of Popularity

Artist popularity may be a deterministic factor in artist re-

trieval, both for training and evaluation. Intuitively, we

likely have more data about popular artists, which implies

more multimodal data is available for training. At the same

time, the scale of evaluation metric themselves can be in-

flated as more popular artists would have more ground

truths (annotated as ‘similar artists’). To confirm this, we

compute a proxy measure for the artist popularity (POP) as

POP(artist) = log(#listen + 1), 10 and then further com-

pare it to other training and evaluation measures.

Firstly, we compare POP with ECL and the retrieval

performance. Figure 3 shows that there is correlation

among POP, ECL, and nDCG. In particular, ECL has a

negative correlation with nDCG. This is a desirable out-

come as a model that minimizes the contrastive loss rec-

ommends “similar” artists even though such a model is not

being explicitly shown artist-relatedness ground truth dur-

ing training. Meanwhile, POP also correlates with nDCG,

which demonstrates the confounding effect of popularity

to the task itself.

Further, we investigate how multimodal models interact

with artists with different popularities. One of the benefits

of employing multiple modalities is the potential mitiga-

tion of the information void for “cold-start” artists from

their music audio data. For MIR applications, audio is

likely accessible even when some of the other modalities

are not readily available. For instance, the CF modality

is not available before artists’ songs are consumed by the

listeners. To confirm whether the audio and further multi-

modal embedding models would benefit less popular artists

via multimodality, we divided the artists in 20 groups by

popularity quantiles. For each group, we further compute

the relative improvement of retrieval performance (nDCG)

compared to the CF single modality model.

Figure 4 suggests that the original audio embedding

achieves better performance for the less popular artists

in all training and evaluation conditions. The contrastive

model shows improvements for the majority of the groups

compared to the audio, while it may have smaller or no

improvement over audio in the least popular group for the

MSD dataset. In the OWN dataset, a similar trend is ob-

served where the contrastive model shows a small decline

for the most popular groups compared to the original CF

embeddings. The two baseline models indicate relatively

flat results except in the case of the MSD-FMC subset,

which implies that their prediction may be more reliant on

the CF modality. For the MSD-FMC subset, both baselines

follow similar trends to the audio and contrastive model.

3.5 Multimodal Embedding Space Analysis

We conduct a correlation study of multiple measures

where, for each artist, we compute clustering measures

and other key indicators such as contrastive loss ECL, re-

trieval performance (nDCG@200), and finally the popular-

10 #listen denotes the total listening count of the artist, computed from
the MSD-Echonest Profile dataset.
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terest. Each cell indicates value of τ between two associ-

ated variables. POP denotes the popularity measure.

ity measure. In this way, we expect to obtain a better un-

derstanding of what contrastive learning achieves in terms

of clustering of embeddings, and how they are connected

to retrieval performance and popularity.

The result of the correlation study can be found in Fig-

ure 5. We see that the ECL is highly correlated toCDintra,

while almost independent to CDinter. Notably, in terms

of magnitude, all other measures (ECL, CDintra, and

POP) are relatively more correlated to nDCG compared to

CDinter, and also correlated to each other. 11

These relations suggest that our contrastive learning

method aims at producing an artist embedding space where

the diverse modalities of an artist occupy a coherent region,

but not necessarily a region that is unique to the artist.

CDinter shows lower correlation with most of the other

measures, which confirms its relatively small connection to

the contrastive learning and the artist retrieval downstream

task. We hypothesize that this is because the maximization

of CDinter is constrained by the artist similarity inherent

in the multimodal information and ultimately preserved.

This is desirable if the ultimate goal is a representation that

can measure artist similarity.

4. CONCLUSION AND FUTURE WORK

In this work, we propose a method based on contrastive

learning to combine multiple artist modalities into a sin-

gle representation. In an artist similarity task, we show

our method yields clear improvements over other methods

in terms of retrieval accuracy and coverage, and success-

fully combines complementary information from diverse

modalities. In particular, we investigate retrieval bias to-

wards the query’s modality. Although our method exhibits

a slight bias towards retrieving artists with similar modal-

ity to the query, we show it handles cross-modal retrieval

better than other methods. Future work may be dedicated

to further mitigate this bias. Additionally, we show that our

method is particularly beneficial for less popular artists.

Our method appears to generate an artist representation

space with high local coherence for intra-artist modalities,

but at the cost of inter-artist separation. Depending on the

final application, this is a property that could perhaps be

managed by iterating on the contrastive learning method,

for instance, by adapting the loss function or by adapting

the size of the training sample batch as suggested in [28].

11 We focus on the magnitude, as the goal of this study is to investi-
gate the degree to which some of the key indicators are associated with
clustering quality measures in absolute manner
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