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ABSTRACT

Contrastive learning has recently appeared as a well-suited

method to find representations of music audio signals that

are suitable for structural segmentation. However, most

existing unsupervised training strategies omit the notion of

repetition and therefore fail at encompassing this essential

aspect of music structure. This work introduces a triplet

mining method which explicitly considers repeating se-

quences occurring inside a music track by leveraging com-

mon audio descriptors. We study its impact on the learned

representations through downstream music segmentation.

Because musical repetitions can be of different natures, we

give further insight on the role of the audio descriptors em-

ployed at the triplet mining stage as well as the trade-off

existing between the quality of the triplets mined and the

quantity of unlabelled data used for training. We observe

that our method requires less non-annotated data while re-

maining competitive against other unsupervised methods

trained on a larger corpus.

1. INTRODUCTION

The task of music structure analysis consists in locating

the boundaries between consecutive segments and group-

ing them into relevant categories, called musical sections.

This problem has gained attention in the field of music in-

formation retrieval and has numerous applications, such

as music generation [1, 2], music recommendation [3] or

music similarity estimation [4]. Structure is also strongly

linked to other musical elements such as harmony, melody

and rhythm [5] and has been leveraged to address other

tasks such as beat and downbeat tracking [6] or chord tran-

scription [7].

Most methods that have been proposed for the task of

music structure analysis can be categorized according to

the structure trait they rely on, namely: homogeneity, nov-
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elty and repetition [8]. The homogeneity rule states that

musical attributes should be relatively homogeneous inside

musical segments or sections. Consequently, transitions

from one segment to the next should result in points of im-

portant changes in musical features (i.e. novelty). The idea

of repetition in structure assumes that sections of the same

type are rather similar sequences. In other words, musical

sections are generally characterized by the degree at which

they repeat throughout the entire music piece, which has

been the starting point of many algorithms to infer song

structures [9–11]. However, both the extent to which two

sequences can be considered as repetitions, or how homo-

geneous a given musical segment is, imply a certain def-

inition of similarity between time instants. Such similar-

ity criteria are usually derived from frame representations

based on common audio descriptors such as harmonic and

timbral features, or their combinations [8].

A line of work has focused on finding better-suited au-

dio representations so as to make sure that frames from the

same musical sections yield similar features and therefore,

sharpen transitions between consecutive musical segments.

Methods based on contrastive learning have recently been

proposed to find such representations [12–15], as they can

leverage commonalities from large quantities of music data

to learn a distance metric that complies with the aforemen-

tioned requirements. Training such models either involves

the use of structural annotations [13] or some pre-defined

proxies to select frames that should be brought close to one

another in the latent space [12,15]. In the latter case, these

heuristics mainly rely on the homogeneity principle and

discard the notion of repetition occurring inside a track,

preventing them from fully exploiting unlabelled data.

The method introduced in this work aims at bridging

the gap between current unsupervised deep metric learning

methods for music segmentation and both ideas of homo-

geneity and repetition that are inherent to musical struc-

ture. As in previous work [12, 15], a contrastive learning

pipeline using a triplet loss is adopted. However, triplets

are mined by seeking repeating sequences inside the input

track with respect to various hand-crafted audio features.

In a preliminary analysis, a qualitative evaluation of the

triplets generated is performed by direct comparison with

structural annotations of a manually annotated test dataset.

We then measure how these representations impact down-
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stream segmentation on two datasets for music structure

analysis. Finally, we demonstrate that our approach re-

quires less non-annotated data than previous similar meth-

ods. We also give further insight on how the choice of the

input features used to mine triplets affects training and its

relationship with the music genre that the resulting repre-

sentations are tested on.

2. RELATED WORK

Numerous methods for music structure analysis rely on

measuring similarity between every point of a music

recording to retrieve homogeneous segments and tran-

sitions between them. Since music is naturally multi-

dimensional, many factors such as harmony, timbre or in-

strumentation can be associated with boundaries between

musical sections [16]. Therefore, several strategies have

been adopted to capture short-term similar regions, and it

has been shown that sharp timbre changes can be a good

cue for section transitions [17–19].

However, not all boundaries can be explained solely

by such changes in musical features, as the perception of

structure is also greatly affected by additional character-

istics of a music recording such as parallelism, pauses or

musical rules proper to the music genre considered [16].

Therefore, other approaches tend to rely on the repetition

principle to characterise the structure of a music piece.

For example, early work on music segmentation has at-

tempted to find audio representations to identify repeating

elements inside music recordings, such as pitch estimation

or polyphonic transcription [10]. Generally, repetition-

based methods rely on harmony-related information from

the audio, as the instrumentation or other factors are sub-

ject to variations between different occurrences of a given

musical section [18, 20].

Several algorithms have also been proposed to unify

these two types of approaches by recognizing similar re-

gions and repetitions of varying lengths. For example, inte-

grating structural information at different scales into frame

representations has led to considerable improvements in

the recognition of musical segments [21, 22].

Even though these methods are theoretically well

grounded and have proven to be efficient on commonly

used datasets, the traditional hand-crafted descriptors they

use can fail at accommodating different structure types and

music genres. On the other hand, deep learning-based

methods are able to extract efficient features from large

quantities of data, thus, surpassing traditional audio de-

scriptors [12]. Approaches based on contrastive learning

also have the advantage to be easily incorporated into the

classical music structure analysis pipeline, by simply re-

placing the original input features by the deep embeddings

they learn from training data. To this end, Wang et al. [13]

use structural annotations from a labelled training dataset

to find positive and negative pairs of frames and a multi-

similarity loss function [23]. They additionally employ a

mining mechanism to further improve convergence of their

model. Using structural annotations allows for explicitly

enforcing frames of identical sections to yield similar fea-

tures regardless of their appearance throughout the track.

Despite not relying on annotations, the method in this work

is similar to theirs, in the sense that it explicitly considers

section repetitions inside a music recording.

A similar method proposed by McCallum [12] proceeds

in an unsupervised manner with a triplet loss. This time,

positive and negative frames are sampled using time prox-

imity as a proxy: frames occurring within a small time

interval are more likely to belong to the same musical

sections than those separated by a larger amount of time.

While this assumption generally holds true, it completely

discards the notion of repetition, which can limit the effi-

cacy of the approach. In the present work, this limitation is

addressed by using pairwise frame similarity measures as

prior information to guide the triplet sampling mechanism.

This temporal-based mining method [12] is used as a base-

line in this work and referred to as temporal sampling.

3. METHOD

The core of the triplet mining method proposed in this

work resides in the estimation of a self-similarity matrix,

which should reflect as much as possible section label as-

signment corresponding to structural annotations. This

approximation of ideal pairwise frame similarities should

yield high values for frames belonging to the same musi-

cal section, and low values otherwise. This self-similarity

matrix is used as a probability mass function according to

which are sampled, for each given frame, positive and neg-

ative examples across the whole input track.

3.1 Triplet loss

The method proposed in this work consists in finding

triplets of audio feature patches (xa, xp, xn) where xa is

the anchor, xp is a positive example from the same mu-

sical section and xn the negative example sampled from

a different one without using structural annotations. The

models are trained using the triplet loss, which for a given

triplet T = (xa, xp, xn) is expressed as:

L(T ) = [d(f(xa), f(xp))−d(f(xa), f(xn))+δ]+ , (1)

where d(x, y) is a pre-defined distance metric, [.]+ denotes

the Hinge loss, δ > 0 is the margin parameter, and f(x)
is the projection of x into the embedding space by a deep

neural network.

3.2 Finding repetitions

The choice of the input features from which frame-wise

similarities are extracted greatly influences the final triplet

sampling mechanism. As the goal is to jointly detect ho-

mogeneous regions and overall repetitions throughout the

input track, we employ a combination of timbral and har-

monic features as done in previous work [24, 25]. These

features are beat-synchronized beforehand, using the algo-

rithm from Korzeniowski et al. [26] implemented in the

madmom package [27]. One way to emphasize repeti-

tion is to encode features into time-delay embeddings, so
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that pairwise comparisons are performed over short time-

windows: given a sequence X = {Xi}i∈{1,...,N} of fea-

ture vectors, the ith time embedding vector X̃i is obtained

by stacking the m feature vectors ranging from i−(m−1)
to i:

X̃i =
[

X
T
i X

T
i−1 . . .X

T
i−(m−1)

]T

, (2)

where m denotes the embedding dimension, ruling how

much of past information is considered. Such transforma-

tions have successfully been used for music structure anal-

ysis [22], structure-based music similarity [4] and more

generally in the field of non-linear time series analysis

[28]. The final representation’s temporal dimension re-

mains N , as X is first zero-padded before transformation.

Then, a self-similarity matrix is built from the obtained se-

quence of time-lag features such that:

M(i, j) =

{

exp
(

−
d(X̃i,X̃j)

b

)

, X̃j ∈ NNk(X̃i)

0, X̃j /∈ NNk(X̃i)
(3)

where d(x, y) is the euclidean distance, b the bandwidth

parameter, NNk(x) denotes the k-nearest neighbors of x
and i, j = 1, . . . , N . The self-similarity matrix M is then

filtered with a sigmoid activation, such that:

M̂(i, j) = σ

(

M(i, j)

maxk M(i, k)

)

, (4)

where i, j = 1, . . . , N and the σ function defined as:

σ(x) =
1

1 + e−α(x−β)
, (5)

where α > 0 is a parameter ruling the steepness of the

curve and β ∈ [0, 1] a threshold above which the compo-

nents of S are set to values close to 1. This process is ap-

plied both using MFCC and chroma features, from which

we obtain their respective filtered self-similarity matrices

SM and SC using Equation (4) (first row of Figure 1). The

matrix S is then obtained by linear combination, such that:

S = γSM + (1− γ)SC , (6)

where γ ∈ [0, 1] weights the contributions of each feature

type. The matrix S (second row, left column of Figure

1) is row-wise min-max normalized and filtered with the

sigmoid function defined in Equation (5), diagonal stripes

indicating repeating sequences are enhanced by median fil-

tering similar to the one used by McFee et al. [18].

3.3 Imposing segment homogeneity

The obtained pairwise similarity S provides information

about the repetitions present inside the input track. How-

ever, using it as it is to mine positive (large S(a, p)) and

negative examples (small S(a, n)) would result in many

trivial triplets, as positives would be located at exact points

of repetitions. Therefore, a dilation operation is applied

to the matrix S to enlarge these detected regions of repe-

tition. Similar to the method by Serra et al. [22], a two-

dimensional Gaussian kernel G of size K is convolved

with S:

Sp = S ∗G, (7)
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Figure 1. Example of the self-similarity approximation

process for The Beatles — Baby’s In Black. Top to bot-

tom, left to right: self-similarity lag-matrices obtained us-

ing MFCC (SM ), chroma features (SC), median filtered

combination (S), reference self-similarity matrix (super-

vised scenario), positive matrix (Sp), negative matrix (Sn),

positive (Tp) and negative (Tn) sampling matrices using

temporal sampling [12]. White dotted lines denote bound-

ary instants.

This has the effect of blurring the regions of S around its

diagonal stripes, which approximates the width of the cor-

responding musical segments in a more uniform manner

than directly using the unfiltered matrix S. The size of the

kernel K logically impacts the extent to which this dilation

is performed. It was found that setting K = 8 (beats) pro-

vided a good balance between the amount of dilation and

its alignment with segment boundaries (third row, left col-

umn of Figure 1), as it blurs repetitions over 2 bars when

songs follow a 4/4 time signature 1 .

1 Such value might induce a bias towards specific western music gen-
res. This parameter should ideally be adapted to each training track.
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3.4 Negative mining

While the matrix Sp guides the selection of positive ex-

amples for any frame of the input track, the triplet loss re-

quires to find a third point with a different label, called neg-

ative example. In our case, such example should belong to

a different musical section, which could be easily solved by

searching for the least similar frames from the anchor (i.e.

using the matrix Sn = 1−Sp for sampling). However, do-

ing so is likely to result in trivial triplets where the relative

difference between d(f(xa), f(xp)) and d(f(xa), f(xn))
from Equation (1) might already be larger than the margin

δ, thus, yielding small gradients that prevent the network

from learning features that are discriminative enough [29].

Instead, we enforce negative examples to be chosen close

to the anchor’s location while still avoiding homogeneous

regions indicated by the positive matrix Sp. To this end,

the negative sampling matrix Sn is obtained by applying

an exponential decay to 1− Sp such that:

Sn(i, j) = (1− Sp(i, j))e
−λmax( |i−j|

N
,Sp(i,j)), (8)

where λ > 0 is a parameter that defines the strength of

the smoothing. As a consequence, components near the

main diagonal of Sn (third row, right column of Figure 1)

receive greater values than those close the opposite edges,

thus favoring frames located within consecutive segments

of that of the anchor.

The final sampling process works as follows: given an

anchor point ia chosen among the N frames of the in-

put track, the weight attributed to a certain index ik when

sampling the positive example follows the discrete prob-

ability distribution defined by the a-th row of Sp, such

that Pr(I = ik) = Sp(a, k). The negative example is

chosen in a similar fashion with the matrix Sn, such that

Pr(I = ik) = Sn(a, k).

4. EXPERIMENTAL SETTING

This section details the experiments performed to as-

sess the efficacy of the proposed triplet mining method.

First, a preliminary evaluation of the triplets generated is

done against structural annotations from a commonly used

dataset for music structure analysis. Secondly, we train two

separate convolutional neural networks using triplets ob-

tained by temporal sampling and those from our method.

The obtained embeddings are fed as input to a downstream

music segmentation algorithm and performance on both

boundary detection and structural grouping is measured.

Finally, to gain more insight on the quality of the triplets

generated, training is performed on different fractions of

the unlabelled training dataset.

4.1 Datasets

Since this work falls under the scope of unsupervised

learning, a non annotated external audio collection is used

for training. It is composed of 20, 000 tracks, spanning

various musical genres such as rock, popular, rap, jazz,

electronic or classical. These were retrieved from publicly

available playlists and the audio obtained from YOUTUBE.

Care has been taken to discard any track from this exter-

nal collection also present in one of the following testing

datasets. Training is separately done on 10%, 50% and

100% of this dataset.

SALAMI: the Structural Annotations for Large

Amounts of Music Information (SALAMI) [30] contains

1, 359 tracks ranging from classical, jazz, popular to world

and live music. For evaluation, we use the upper anno-

tations of a subset of 884 songs labelled by two different

annotators.

JSD: the Jazz Structure Dataset [31] gathers 340 jazz

recordings provided with two-level annotations: the cho-

rus level (a full cycle of the harmonic schema, which is the

annotation level used for evaluation) and a solo level, con-

sisting of one more choruses. These annotations follow the

common jazz structure schema that includes the introduc-

tion of the main melody (theme), followed by alternating

solos from the different musicians and a final return to-

wards the main theme at the end of the track.

4.2 Evaluation metrics

Common evaluation metrics for automatic structure analy-

sis are employed throughout our experiments. For bound-

ary detection, we report the F-measure 2 of the trimmed 3

boundary detection hit-rate with a 0.5 and 3-second tol-

erance windows (HR.5F, HR3F respectively). For struc-

tural grouping, we report the F-measure of frame pair-

wise clustering [21] (PFC), which gives another view on

flat segmentation performance in terms of frame-wise sec-

tion assignment. Additionally, the normalized conditional

entropy score (NCE) [33] is also calculated, in order to

indicate from a probabilistic perspective the amount of

information shared between predicted label distributions

and their corresponding reference annotations. In the case

where the test dataset has more than one annotator, the best

score across annotators is kept, as the goal of the evaluation

process is to measure how close to human ground-truth the

predicted segmentations are. The average score obtained

per metric is reported and the statistical significance is as-

sessed using a paired-sample T-test with p < 0.05.

4.3 Implementation details

Input features: All tracks are resampled at 22.05
kHz. We use log-scaled Mel-spectrograms as input to the

deep network, with a window and hop size of 2048 and

256 respectively. We compute 60 Mel-band coefficients

per frame. Feature patches are composed of 512 frames

(≃ 5.94s) and centered at each detected beat location.

Mining parameters: Chroma features are extracted us-

ing a minimum frequency of 27.5 Hz over 8 octaves. 20
MFCC coefficients are calculated per frame and the very

first one is discarded. Both are calculated with the librosa

2 All evaluations are done using the mir_eval package [32].
3 The first and last boundaries are discarded during evaluation, as they

correspond to the beginning and the end of the track and therefore, do not
provide any information regarding the system’s performance.
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library [34]. The features are encoded into time-delay rep-

resentations using context values of m = 16 and m = 8
beats respectively. The parameters α and β of the sigmoid

filtering step are set to 60 and 0.85. We give equal weight

to each feature by setting the γ = 0.5 in Equation (6). Fi-

nally, the negative matrix Sn is calculated with a smooth-

ing parameter λ = 5. These parameters were found using

simple grid searches and visual inspections of the obtained

self-similarity matrices.

Network architecture: The encoder consists of a con-

volutional neural network composed of 3 convolutional

layers, each followed by a max-pooling layer and Elu ac-

tivation, and two fully-connected layers comprising 128
units with Elu and linear activations respectively. All con-

volutional layers use a kernel size of size (3, 3) with 32
filters each. The output embeddings are ℓ2-normalized be-

fore calculating the triplet loss. The models are imple-

mented 4 with Pytorch 1.7.1 [35]. The SGD optimizer

with 10−4 weight decay and 0.9 momentum is used, the

models are trained for a maximum of 200 epochs, where

each batch is composed of 256 triplets obtained from one

single track. Similar to previous work [12], the margin

parameter δ is set to 0.1 and the embedding dimension to

d = 128.

Downstream segmentation: For all experiments, the

embeddings returned by each model are fed as input to

spectral clustering [24], as this algorithm jointly performs

both boundary detection and structural grouping in an un-

supervised manner and has proven to be efficient in previ-

ous studies [13, 14]. This also allows one to compare the

influence of each of the tested representations into a sin-

gle unified framework. The original algorithm takes two

distinct beat-synchronized audio features as input (MFCC

and CQT). We consider this method as a second baseline

which we denote as LSD (Laplacian Structural Decom-

position). However in our case, it is directly applied to

the self-similarity Sp of each track. When this algorithm

is combined with deep representations, we simply replace

both input features by the embedding matrix. Finally, be-

cause spectral clustering outputs multiple levels of seg-

mentation, only the one maximizing the considered metric

is reported (HR.5F and HR3F for boundary detection, PFC

and NCE for structural grouping).

5. RESULTS

5.1 Preliminary evaluation

We generate 256 triplets per track contained in the

SALAMI dataset and report the proportions of true pos-

itives, true negatives and correct triplets in Table 1. For

comparison purposes, we also provide a random base-

line, where each anchor, positive and negative example is

uniformly sampled over the whole track. The sampling

method proposed significantly improves the selection of

negative examples compared to the temporal sampling ap-

proach. However, random negative sampling performs bet-

ter than our approach. This was to be expected, since

4 Code: github.com/morgan76/Triplet_Mining

the latter samples negatives over the whole track while

our method greatly narrows down the number of proba-

ble candidates (see Equation (8)). Conversely, the tempo-

ral sampling returns a higher proportion of true positives

than ours, since these are sampled in a relatively short time

window around their respective anchor, thus omitting any

section repetition occurring inside the input track. All in

all, our approach returns a much higher proportion of cor-

rect triplets than either of the comparison strategies while

guaranteeing that positive examples are located within the

right musical sections and the negative within a relatively

short time window around their anchor’s.

Sampling TP TN CT

Random .401± .22 .595± .21 .194± .06

Temporal [12] .886± .32 .398± .49 .325± .47

Ours .800± .40 .583 ± .49 .432 ± .50

Table 1. Triplet mining results on upper annotation level

of SALAMI dataset. TP, TN, CT: proportions of true pos-

itives, true negatives and correct triplets respectively. Re-

sults highlighted in bold denote statistically significant im-

provements over temporal sampling according to a paired-

sample T-test with p < 0.05.

5.2 Segmentation and structural grouping

Table 2 shows the performance of our approach against

temporal sampling on the upper annotations of the

SALAMI dataset. Regardless of the amount of training

data, our method constantly improves both boundary de-

tection and structural grouping in a significant manner. It

is also interesting to see that such improvement is already

achieved when the proposed method uses only 10% of the

training dataset. This corroborates the results from Section

5.1, showing that improving the triplets quality provides a

cleaner training signal and makes learning more efficient.

Method (Split) HR.5F HR3F PFC NCE

LSD .195 .486 .707 .682

Temp. (10%) [12] .280 .665 .770 .677

Ours (10%) .291 .676 .777 .691
Temp. (50%) [12] .288 .671 .773 .678

Ours (50%) .296 .682 .778 .690
Temp. (100%) [12] .284 .670 .773 .678

Ours (100%) .297 .683 .781 .694

Table 2. Flat segmentation results on SALAMI (upper an-

notations). Results in bold denote statistically significant

improvement over temporal sampling on same split (de-

noted as Temp.).

From a more qualitative perspective, Figure 2 shows

examples of self-similarity matrices derived from the em-

beddings trained with temporal sampling and our method.

In the latter case, consecutive musical sections are better

discriminated (clearer block structures on the main diago-

nal). Section repetitions (visible as diagonal stripes and

off-diagonal blocks) are more straightforward to recog-
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nize, especially those with relatively small durations (sec-

tions A, B or D).

Method (Split) HR.5F HR3F PFC NCE

LSD .195 .486 .707 .682

Temp. (10%) [12] .221 .568 .739 .745

Ours (10%) .219 .586 .744 .749

Temp. (50%) [12] .243 .586 .763 .766

Ours (50%) .222 .583 .755 .758

Temp. (100%) [12] .229 .590 .766 .767

Ours (100%) .225 .592 .754 .760

Table 3. Flat segmentation results on JSD (chorus annota-

tion level). Results in bold denote statistically significant

improvement over temporal sampling (denoted as Temp.)

on same split.

Results on the JSD dataset are given in Table 3. Here,

the improvements made are not as consistent. However,

when using only 10% of the training dataset, the perfor-

mance of our approach remains within the same range than

that of the baseline when trained on larger splits. Com-

pared to the results obtained on SALAMI, the small im-

provements made here can be associated with the way

structure is defined in terms of feature similarity in jazz.
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Figure 2. Example of self-similarity matrices for the track

SALAMI 1380. Left: encoder trained with temporal sam-

pling. Right: encoder trained using the proposed triplet

mining method. White dotted lines denote boundary in-

stants.

5.3 Discussion on mining parameters

Impact on triplet selection: The sampling parame-

ters could further be tuned to improve performance. More

specifically, the audio descriptors employed at the first

stage and their combination could be adapted to the train-

ing data in order to better emphasize more specific aspects

of the audio. For example, some music genres such as

pop music or rock generally rely on the repetition of cer-

tain chord progressions [1]. However, introducing a degree

of timbral homogeneity allows for differentiating two sec-

tions that are semantically similar, such as in the example

from Figure 1, ’refrain’ and ’refrain-Solo’. Putting more

emphasis on timbral features might be better adapted to

music genres such as jazz, where structure is highly influ-

enced by changes in soloists. As an example, Figure 3 dis-

plays the positive sampling matrices obtained when vary-

ing the γ parameter from Equation (6). It is clear to see

that favoring timbral similarity helps better approximating

segment transitions and mutual dissimilarities between the

successive solos of saxophone, piano and guitar.
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Figure 3. Example of positive sampling matrices for

Michael Brecker — Song for Bilbao. Left: emphasis on

timbral content (γ = 0.9). Right: emphasis on harmonic

content (γ = 0.1). White dotted lines denote boundary

instants.

Impact on segmentation: To illustrate how the bal-

ance between harmonic and timbral features impacts the

final segmentation, the encoder is trained on the 10% and

50% splits of the dataset with γ = 0.9, thus putting a

stronger emphasis on the MFCC-based similarity at the

triplet mining stage. All other parameters are kept to their

initial values described in Section 4.3. The segmentation

results summarized in Table 4 show that the choice of the

parameter γ does impact the training process. In this case,

putting more weight on timbral information seems to make

the representations more sensitive to timbral changes and

improves boundary detection (HR3F) in a significant man-

ner compared to temporal sampling.

Method (Split) HR.5F HR3F PFC NCE

Temp. (10%) [12] .221 .568 .739 .745

Ours (10%, γ = 0.9) .223 .585 .743 .750

Temp. (50%) [12] .243 .586 .763 .766

Ours (50%, γ = 0.9) .234 .607 .769 .772

Table 4. Flat segmentation results on JSD (chorus annota-

tion level) with emphasis on timbral features (γ = 0.9).

Results in bold denote statistically significant improve-

ment over temporal sampling (denoted as Temp.) on same

split.

6. CONCLUSION

This work introduced a repetition-based triplet mining

mechanism to learn efficient audio representations prior to

music segmentation, which can significantly improve both

boundary detection and structural grouping, while needing

less data than previous similar methods. Complementary

experiments demonstrate that this sampling process can be

further adapted to the final type of segmentation desired by

either emphasizing harmonic or timbral information from

the input track.
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