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ABSTRACT

In this paper, we address the beat tracking task which is to

predict beat times corresponding to the input audio. Due to

the long sequential inputs, it is still challenging to model

the global structure efficiently and to deal with the data im-

balance between beats and no beats. In order to meet the

above challenges, we propose a novel Transformer-based

model consisting of a low-resolution encoder and a high-

resolution decoder. The encoder with low temporal reso-

lution is suited to capture global features with more bal-

anced data. The decoder with high temporal resolution is

designed to predict beat times at a desired resolution. In

the decoder, the global structure is considered by the cross

attention between the global features and high-dimensional

features. There are two key modifications in the proposed

model: (1) adding 1D convolutional layers in the encoder

and (2) replacing positional embedding by the upsampled

encoder features in the decoder. In the experiment, we

achieved the state-of-the-art performance and showed that

the decoder produced more precise and stable results.

1. INTRODUCTION

Beat tracking is an important task in Music Information

Retrieval (MIR) area with a long history. The task is to

predict beat times, a periodic sequence of time instants

which people can tap along with, from musical pieces.

The first attempt of beat tracking for polyphonic musical

audio signals can date back to around 30 years ago [1].

In the past three decades, we see the techniques shift-

ing from signal processing to machine learning. In the

most recent deep-learning-based methods, sequence mod-

els have been used to produce beat probabilities for each

input frame, with the final beat times detected by the HMM

on the beat probabilities in the post-processing step. In

these models, various sequence models have been used, in-

cluding Recurrent Neural Network (RNN) [2–4], Tempo-

ral Convolutional Network (TCN) [5–7], and Transform-

ers [8–10]. Convolutional Neural Networks (CNNs) are

also commonly combined in the models for front-end fea-

ture embedding [9, 11, 12].
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To produce good beat tracking results, the model needs

to consider both local timing and global consistency. This

brings a contradiction on choosing the temporal resolu-

tion. The problem of using low temporal resolution (i.e.,

low frame rate) is that we cannot predict beats with pre-

cise times. On the other hand, using high temporal resolu-

tion (i.e., high frame rate) results in long sequential inputs

and imbalanced output labels. The current commonly-used

10ms temporal resolution enables an easy comparison on

the results. With such high temporal resolution, the se-

quential inputs are already relatively long for the RNN,

causing the gradient vanishing problem. Using TCN and

Transformer helps to solve the gradient vanishing problem,

while modeling long sequences can still be challenging.

To model long sequences more efficiently, more compact

models have been proposed, such as dilated self-attention

[9] and linear Transformer [10]. Another problem caused

by the high temporal resolution is the data imbalance is-

sue between beats and no beats. Given the same tempo,

the higher the temporal resolution is, the more the no-

beat labels exist between the beat labels. In order to solve

this problem, smoothed labels [7, 9, 13] and weighted loss

functions designed for the data imbalance problem [14–16]

are applied to achieve more efficient training. The above

long sequence modelling issue and data imbalance issue

can be more challenging if a higher temporal resolution

than 10ms is needed. In fact, there are some commer-

cial music applications that potentially require more tem-

porally precise beat tracking for sample-wise audio edit-

ing/mixing/mashups based on beat timings and highly rigid

music synchronization.

In order to tackle the contradiction between high and

low temporal resolutions, we propose a novel beat track-

ing model based on the Transformer with low-resolution

encoder and high-resolution decoder. With the low tem-

poral resolution, the sequential inputs become shorter and

the training data become more balanced, which makes the

global structure easier to model by the encoder. At the

same time, the beat time precision in the output can still

be preserved by the decoder with the high temporal reso-

lution. The Transformer is a good architecture for joining

the two parts because the encoder and decoder are not re-

quired to be the same length, and features of different di-

mensions can be jointly learned by the cross attention in

the decoder. We modify the original Transformer in sev-

eral ways to make it work for beat tracking with the pro-

posed combination of the encoder and decoder. First, we
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stack 2D convolutional layers for feature learning from the

spectral inputs and 1D convolutional layers inside the en-

coder layers for feature smoothing and dimension adjust-

ment. Second, we use the upsampled encoder feature to

replace the position encoding in the decoder. In the ex-

periments, we produced results comparable to the state-of-

the-art performance. The analysis of experimental results

showed that the decoder not only produced more precise

results, but also helped to recover the missing beats and to

filter out unwanted peaks between beats, making the beat

tracking more stable.

The rest of paper is organised as follows. Section 2

summarises the related work on Transformer-based beat

tracking models and multi-scale models. In Section 3, we

give a detailed description of the proposed model, espe-

cially focusing on the proposed modifications. Section 4

presents the experiments with ablation study, results, and

attention visualisation. In the last section, we conclude the

paper and show aspects for future improvements.

2. RELATED WORKS

2.1 Transformer in beat tracking

Recently, Transformers have been used for many MIR

tasks with promising performance, such as music tran-

scription [17–19], music tagging [20], and beat tracking

[8–10]. In the SpectTNT model, Transformer encoders

are used for modeling both the spectral and temporal fea-

tures [8]. The model also combines the Temporal Con-

volutional Network (TCN) model for better beat tracking

results. Since the Transformer is computationally expen-

sive for long sequences, the inputs are divided in 6-second

chunks to process. For modelling the long sequences ef-

ficiently, more compact Transformers have been applied,

including the dilated Transformer in the Beat Transformer

model [9] and the linear Transformers for singing beat

tracking [10].

These existing methods are based on Transformer en-

coders, while in our model, we use both the encoder and

decoder, which is an important contribution of this paper.

By adding the decoder layers, we can set a more reasonable

temporal resolution for the encoder input, more specifi-

cally, low-temporal-resolution inputs. In other words, in

the proposed model, the temporal resolution of the encoder

can be independent of the high temporal resolution of the

beat tracking output. With the low-resolution encoder, we

are able to model the sequences more efficiently and obtain

more balanced training data.

2.2 Multi-scale structure

In the proposed model, we leverage features at different

scales: low-dimensional features for modeling the global

structure and high-dimensional features for predicting pre-

cise beat times. Such multi-scale structure has also been

used in related domains. In our previous work, we pro-

posed a multi-scale beat tracking model based on the

Wave-U-Net, which learned features at different scales

from waveform and spectral inputs with downsampling
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Figure 1: The model architecture of the beat tracking

model. The coloured parts indicate the modifications from

the original Transformer.

and upsampling blocks [21]. Schreiber et al. achieved

tempo estimation by concatenating multi-scale features

learned from a series of convolutional layers with differ-

ent filter size from 32 to 256 [22]. Sun et al. [23] propose

a multi-scale structure for tempo estimation by downsam-

pling/upsampling the feature to different scales and com-

bining multi-scale features repeatedly.

3. MODEL ARCHITECTURE

The proposed model architecture is shown in Figure 1. Our

model is based on the Transformer, consisting of both en-

coder and decoder layers. As we have already written, the

key idea is to use a low-resolution encoder for modelling

the global structure, depicted on the left side of the fig-

ure (starting from “Input_low” denoting the low-resolution

input), and a high-resolution decoder for predicting beats

more precisely, depicted on the right side of the figure

(starting from “Input_high” denoting the high-resolution

input).

To make it work for beat tracking, we make some mod-

ifications on the original Transformer. The modified parts

are coloured in Figure 1, including adding 1D convolu-

tional layers (“1D Conv”) in the encoder, replacing the po-

sitional embedding by upsampled encoder features (from

“Upsampling Block”) in the decoder, and stacking 2D con-

volutional layers for feature learning from the spectral in-

puts (“2D Conv Block”) in both the encoder and decoder.

In the following subsections, we illustrate the proposed

model in detail.
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Network parameter Setting

filter size 3× 3, 3× 3, 3× 3, 1× 3

maxpooling size 1× 3, 1× 3, 1× 3

activation function ReLU

Table 1: Parameters used in the convolution block.

Encoder

Conv Block filter number 48, 64, 72

encoder layer number 3, 4, 5, 6

head number 4, 8, 12, 16

key dim. 8, 16, 24, 32

inner-layer dim. in feed-forward 32, 48, 64, 72, 128

Conv 1D filter number 32, 64, 96

Conv 1D filter size 5, 15

Decoder

Conv Block filter number 32

decoder layer number 1, 2

head number 4

Table 2: Hyperparameters in the proposed beat tracking

model.

3.1 Input features and 2D convolutional layers

We use the Mel-spectrogram as the input features. For

the low-resolution encoder, we computed 80-dimensional

Mel-spectrogram with a 22050 sample rate and a hop size

of 1024, roughly corresponding to a 46 ms temporal res-

olution (more precisely, 46.44 ms). The high-resolution

Mel-spectrogram is computed the same way but in a hop

size of 256, roughly corresponding to 12 ms temporal res-

olution (more precisely, 11.61ms). The dimensions of the

inputs are (T, 80) and (4T, 80), respectively, where T is

the frame length of the low-resolution input. We choose

such resolutions so that the low-resolution can still distin-

guish beat and no beat frames for fast-tempo pieces, and

the high-resolution outputs can be easily compared to those

of other methods. In the 2D convolutional block, we stack

four 2D convolutional layers and three maxpooling layers

for feature embedding, with details show in Table 1.

3.2 Encoder with 1D convolutional layers

The encoder consists of identical encoder layers which

process the low-dimensional features. As shown on the left

side in Figure 1, each encoder layer includes a multi-head

attention sub-layer and a fully connected feed-forward

network with residual connections. Before the encoder,

we concatenate the features with the positional encod-

ing. Since in the Transformer, the input dimension is not

changeable within the encoder layers, we stack a 1D con-

volutional layer after the feed-forward network for feature

smoothing and channel number adjustment.

3.3 Upsampling Block

Another important change of the proposed model is that

we replace the original positional encoding by upsampled

encoder features for the decoder. In the upsampling block,

there are two upsampling layers with linear interpolation.

The upsampled features are then concatenated with the

high-dimensional features. We also stack a 1D convolu-

tional layer to re-dimension the concatenated features. In

the preliminary experiment, we confirmed that the origi-

nal positional encoding does not work well and the upsam-

pled features worked for indicating rough beat positions.

The ablation study for this replacement is presented in Sec-

tion 4.3.

3.4 Decoder

The decoder processes the high-dimensional features for

predicting more precise beats. The decoder layer con-

sists of three components. As shown on the right side in

Figure 1, between the multi-head attention sub-layer and

a fully connected feed-forward network, there is another

multi-head attention sub-layer which computes the cross-

attention between the low- and high-dimensional features.

We use the decoder as a discriminative model for predict-

ing the output based on the input, rather than a generative

model as the original Transformer decoder. Hence we do

not need to use the causal mask in the first multi-head at-

tention sub-layer.

3.5 Output Layer and Post-Processing

As shown in Figure 1, we stack a dense layer with the sig-

moid activation at the end of the decoder for producing

beat outputs. Then, we apply the DBN from Madmom [2]

for post-processing. We first take the nearest integer of

frame per second (fps) for the post-processing, and then

map the results to the original fps.

3.6 Complete Architecture

We apply random search to find the best hyperparameters

for the model. We set up a grid of hyperparameter values

according to Table 2, and randomly select a subset to com-

pare. The decoder uses the same parameters as the encoder

if not present. The finally chosen parameters are shown in

bold.

4. EXPERIMENTS

4.1 Data

We train, validate, and test the proposed model by using the

standard music datasets with beat annotations as shown in

Table 3. For training and validation sets, all musical pieces

are segmented into 30-second clips with 50% overlap. Seg-

ments from the same musical piece appear only in either

the training or validation set to ensure that there is no over-

lap between the training and validation sets. Test results

are obtained on the whole pieces without segmentation.

We do data augmentation for better tempo balance. We

follow the strategy in [7] to generate input features for less
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Usage Datasets

training only Beatles [24], Harmonix [25],

5 RWC datasets [26, 27],

tapcorrect [28]

8-fold cross- Ballroom [29, 30], Hainsworth [31],

validation SMC [32]

testing only GTZAN [33, 34]

Table 3: The usage of the standard datasets for beat track-

ing evaluation.

Figure 2: The tempo distribution before and after the data

augmentation for the model training.

representative tempos by changing the hop size when com-

puting the mel-spectrogram. The tempo distribution before

and after the data augmentation is shown in Figure 2.

Inspired by [9], we also process the input mel-

spectral features by Harmonic Percussive Source Separa-

tion (HPSS) and obtain the original mel-spectrogram S,

the harmonic part H , and the percussive part P . In the pre-

liminary experiment, we compare two way of using HPSS:

one way is as data augmentation which triples the training

data (i.e., we can use all of S, H , and P with the same beat

annotations); the other way is to concatenate three parts,

S, H , and P , as the more informative input features. Since

the results showed that using HPSS as the data augmenta-

tion works better, we decided to take that way.

4.2 Training

In order to train the model effectively, we compare three

training methods as shown in Table 4. The first method

is training the model (i.e., both the encoder and decoder)

from scratch.

For the other two methods, we first temporarily stack a

dense layer at the end of the encoder and pre-train the en-

coder only with the low-resolution labels. Then we initial-

ize the encoder with this pre-trained model and start train-

Method Initialization Encoder parameters

1 None Trained with decoder

2 Pre-trained encoder Not trainable

in training decoder

3 Pre-trained encoder Trainable

in training decoder

Table 4: Three training methods (the third method was the

best).

ing the decoder. The second method trains the parameters

of the decoder only, by freezing the parameters of this pre-

traind encoder. The third method trains the parameters of

both the encoder and decoder after the above initialization

of the encoder.

We choose the third method for training the model be-

cause it worked best in our preliminary experiments. The

model is trained with binary cross-entropy by using the

RMSprop optimiser [35] with a learning rate of 0.0002.

The batch size is set to 16 for pre-training the encoder, and

4 for training the whole model.

4.3 Ablation Study

To illustrate the influence of replacing the positional en-

coding by the upsampled encoder features in the decoder,

we show the differences on the training with and without

the proposed modification (replacement) in Figure 3. We

see that using the upsampled encoder features decreased

the validation loss slightly and decreased the training loss

in a large degree in comparison to using the positional en-

coding. This shows that the modified model can learn bet-

ter from the training data and generalise well in the valida-

tion set, resulting in better beat tracking results.

4.4 Evaluation

We evaluate the proposed method with three standard

metrics: F-measure with a tolerance window of 70ms,

continuity-based metrics CMLt (tracking accuracy on the

correct metrical level), and AMLt (tracking accuracy with

alternate metrical levels allowed) [24].

4.4.1 The proposed method

In order to validate our model design, besides results on the

decoder outputs, we also show results on the pre-trained

encoder outputs. In Table 5, “Encoder (Th)” indicates the

results obtained by applying a threshold of 0.1 without us-

ing the DBN. “Encoder” and “Decoder (Proposed)” results

are processed by the DBN in the post-processing step, with

the encoder outputs linear interpolated. If we compare the

results of “Encoder (Th)” and “Encoder”, we observe that

the DBN post-processing step increased the performance

in all the four datasets, especially for the continuity-based

results (CMLt and AMLt). Furthermore, if we compare

them with the “Decoder (Proposed)” results, which corre-

sponds to the proposed model, we see performance further

increased on the Ballroom, SMC, and GTZAN datasets.
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Figure 3: The training and validation losses for training the decoder with the original positional embedding or with upsam-

pled encoder features.

Method F-measure CMLt AMLt

Dataset: Ballroom

Encoder (Th) 90.7 80.1 85.7

Encoder 93 87.4 96.1

Decoder (Proposed) 95 91.1 96.4

Beat trans [9] 96.8 95.4 96.6

TF trans [8] 96.2 93.9 96.7

TCN [7] 96.2 94.7 96.1

Dataset: Hainsworth

Encoder (Th) 84.4 66.7 81.8

Encoder 88.2 81 93.4

Decoder (Proposed) 87 76.2 93.6

Beat trans [9] 90.2 84.2 91.8

TF trans [8] 87.7 86.2 91.5

TCN [7] 90.4 85.1 93.7

Dataset: SMC

Encoder (Th) 53.9 32.9 45.6

Encoder 55 45.8 64.1

Decoder (Proposed) 55.4 45.1 65.6

Beat trans [9] 59.6 45.6 63.5

TF trans [8] 60.5 51.4 66.3

TCN [7] 55.2 46.5 64.3

Dataset: GTZAN

Encoder (Th) 87.1 72.8 85.5

Encoder 87.8 78.5 93.7

Decoder (Proposed) 88.4 80.8 94

Beat trans [9] 88.5 80 92.2

TF trans [8] 88.7 81.2 92

TCN [7] 88.5 81.3 93.1

Table 5: Testing results for comparing the proposed

method with three state-of-the-art beat tracking models

[7–9]. The GTZAN dataset is held out for testing only;

other datasets are used in the 8-fold cross-validation. (Th)

means results obtained with a threshold of 0.1 without us-

ing the DBN post-processing step.

In order to understand the effect of the proposed de-

coder better, we show the outputs examples from the pre-

trained encoder and the decoder in Figure 4. We can see

that the encoder outputs are large at beat times, which is

benefit from the more balanced training data in shorter se-

quences. On the other hand, the decoder outputs are small

and even (i.e., more stable), as we expected. As we design,

the decoder basically predicts the beat times at a higher

resolution in comparison to the encoder. The decoder also

helped to recover missing beats as shown in the 5th exam-

ple, where some beats are missing in the encoder output

but they are recovered in the decoder output. Moreover, the

decoder helped to filter out peaks between beats as shown

in the 3rd example, where peaks are more regularly placed

in the decoder output. With the above effects, using the

proposed decoder generally improved results except for

the Hainsworth dataset. For the Hainsworth dataset, we

see the CMLt decreased, but the AMLt remained the same

level, which means that the decrease on the performance is

caused by phase and octave errors. Since the peaks from

the decoder are evener, in some cases it would be more

difficult for the DBN to exclude the peaks between beats.

4.4.2 Comparison to state-of-the-art beat tracking

models

As shown in Table 5, results of the proposed model (“De-

coder (Proposed)”) were comparable to the state-of-the-art

results obtained by three beat tracking models [7–9], de-

spite not the best. Since our goal is not to achieve better

performances than all the state-of-the-art models, these re-

sults are satisfactory since we can show the high perfor-

mances of the proposed model with different temporal res-

olutions. We see noticeable gap on the CMLt in compar-

ison to other methods, which means the proposed model

encountered more phase and octave errors. We hope this

could be improved by including related topics in the multi-

task learning as in [7, 9]. In addition, for the testing-only

dataset GTZAN, the F-measures achieved by thresholding

the encoder outputs (“Encoder (Th)”) are better than what

we expected, given the fact that it did not use the DBN

post-processing step.
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(a) Encoder outputs

(b) Decoder outputs

Figure 4: Output examples from the pre-trained encoder

and the decoder for five different pieces. The ground-truth

beat annotations are indicated by lines pointing down.

4.5 Attention Visualisation

In order to understand how low- and high-dimensional fea-

tures are jointly learned, we show the cross attention ma-

trix between low- and high-dimensional features in the sec-

ond decoder layer in Figure 5. We found that for high-

dimension features at beat times (frames), it got attention

at each beat on the low-dimensional features. For no-beat

times (frames), all attentions were drawn to the frames af-

ter the corresponding beat times, which formed horizontal

lines in this figure. With such attentions, the final high-

dimensional beat outputs were predicted with the captured

global beat structure considered.

5. CONCLUSIONS AND FUTURE WORK

We present a novel Transformer-based model for beat

tracking. The proposed model consists of both en-

Figure 5: Cross attention matrix between low dimensional

features and high dimensional features in the decoder layer.

coder layers and decoder layers which work on low-

and high-dimensional features, respectively. We obtained

beat tracking performances which are comparable to the

state-of-the-art beat tracking results. The experimen-

tal results showed that the proposed model worked well

as designed: with the low-dimensional (low-temporal-

resolution) encoder for capturing the global beat structure

and high-dimensional (high-temporal-resolution) decoder

for predicting more precise beats. Thus, the proposed

Transformer-based encoder and decoder structure succeeds

in providing a new framework for handling multi-scale fea-

tures for beat tracking. Beyond beat tracking, the advan-

tage of this framework can be summarized as follows.

• The encoder and decoder do not require inputs to

be the same length (same temporal resolution), they

can be used to handling features at different scales,

which enables us to sample the features with more

reasonable time resolutions.

• We can make use of features at different scales

jointly learned by the cross attention in the decoder.

We therefore believe that this framework is also adaptable

for other MIR tasks, such as musical structure boundary

detection.

As the analysis of our experimental results showed,

phase and octave errors are relatively high in our results.

As future work, we would like to tackle the problems by

combining downbeat tracking and tempo estimation in the

proposed model by using multi-task learning. In addition,

we also plan to use our model to produce beat outputs in

a higher temporal resolution, which is demanded by some

practical music applications as we discussed in Section 1.

Yet another advantage of our model is that such precise

beats can be achieved by using transfer learning with a

higher-temporal-resolution input for the decoder.
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