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ABSTRACT

Roman Numeral analysis is the important task of identify-

ing chords and their functional context in pieces of tonal

music. This paper presents a new approach to automatic

Roman Numeral analysis in symbolic music. While exist-

ing techniques rely on an intermediate lossy representation

of the score, we propose a new method based on Graph

Neural Networks (GNNs) that enable the direct description

and processing of each individual note in the score. The

proposed architecture can leverage notewise features and

interdependencies between notes but yield onset-wise repre-

sentation by virtue of our novel edge contraction algorithm.

Our results demonstrate that ChordGNN outperforms ex-

isting state-of-the-art models, achieving higher accuracy in

Roman Numeral analysis on the reference datasets. In addi-

tion, we investigate variants of our model using proposed

techniques such as NADE, and post-processing of the chord

predictions. The full source code for this work is available

at https://github.com/manoskary/chordgnn

1. INTRODUCTION

Automatic Chord Recognition is one of the core problems

in Music Information Retrieval. The task consists of iden-

tifying the harmonies or chords present in a musical piece.

Various methods have been proposed to address this task

using either an audio or symbolic representation of the mu-

sic [1]. In the symbolic domain, most approaches focus

on the related and arguably more complex problem of Au-

tomatic Roman Numeral Analysis, which is a functional

harmony analysis problem that has its roots in musicologi-

cal research of Western classical music.

Roman Numeral Analysis is a notational system used in

music theory to analyze chord progressions and identify the

relationship between chords in a given key. In this system,

each chord in a piece of music is assigned a Roman numeral

based on its position within the key’s scale. For example, in

the key of C major, the I chord is C major, the IV chord is

F major, and the V chord is G major. Roman Numerals are
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an important tool for understanding and analyzing the har-

monic structure of music, and they are a valuable resource

for musicians, composers, and arrangers alike.

In Music Information Retrieval, a lot of work has been

done to automate Roman Numeral analysis. However, cur-

rent approaches still face significant challenges. Some of

these are related to the large chord symbol vocabulary. A

common way to address this problem is to divide a Roman

Numeral into several components (e.g., key, degree, inver-

sion) and transform the analysis into a multitask learning

scenario. However, multitask approaches themselves face

challenges with interdependencies among tasks. Lastly, Ro-

man Numeral analysis faces a score representation problem

related to existing models such as CNNs whose inputs must

be in fixed-sized chunks. Recent state-of-the-art approaches

follow an audio-inspired strategy, dividing a musical score

into fixed-length time frames ("windows") which are then

processed by a Convolutional Recurrent Neural Network

(CRNN). However, such a representation is unnatural for

scores and has the added practical disadvantage of being

time-limited (for example regarding notes extending be-

yond the current window) and, due to the fixed-length (in

terms of score time) constraint, capturing varying amounts

of musically relevant context.

In this paper, we propose a new method for automatic

Roman Numeral analysis based on Graph Neural Networks

that can leverage note-wise information to address the score

representation issue. Our model, ChordGNN, builds on

top of existing multitask approaches but introduces several

novel aspects, including a graph convolutional architecture

with an edge contraction pooling layer that combines convo-

lution at the note level but yields the learned representation

at the onset level.

Our proposed method, ChordGNN, is evaluated on a

large dataset of Western classical music, and the experimen-

tal results demonstrate that it outperforms existing state-

of-the-art methods, in terms of the commonly used Chord

Symbol Recall measure. To address the interdependencies

among tasks we investigate the effect of post-processing

and other proposed techniques such as NADE and gradient

normalization. Finally, we look at a qualitative musical

example and compare our model’s predictions with other

state-of-the-art models.

597



Figure 1. A Roman Numeral analysis for two bars for four-

part harmony in C major. Capital letters stand for major

quality and lowercase for minor quality. The third chord has

a dominant seven as its primary degree and the dominant of

C major as its secondary degree. The V 6
5 indicates a major

with a seven quality in second inversion. The bass (lowest

chord note) of that chord is F sharp, the root is D, and the

local key is C major.

2. RELATED WORK

There is a big body of literature covering the topic of Au-

tomatic Chord Recognition applied in the audio domain;

however, in our work, we focus on the problem of auto-

matic Roman Numeral Analysis in the symbolic domain.

It consists of labeling the chords and harmonic progres-

sions in a piece of music using Roman Numerals, where

each numeral represents a chord built on a particular scale

degree. Numerous approaches have tried to automate Ro-

man Numeral analysis or infer harmonic relations between

chords. Notable work includes statistical models such as

Melisma [2], HMM-based models [3], and grammar-based

approaches [4].

In recent years, research has shifted towards a deep learn-

ing and data-driven approach. Due to the large vocabulary

of possible Roman Numerals, the problem has been divided

into several component subtasks, thus resulting in a multi-

task learning setting [5]. As a multitask problem, a Roman

Numeral is characterized by the following components: the

primary and secondary degree (as illustrated in Figure 1),

the local key at the time point of prediction, the root of the

chord, the inversion of the chord, and the quality (such as

major, minor, 7, etc.). Although the root can be derived

from the other components, it was pointed out by [6] that

redundancy is assisting Roman Numeral analysis systems

to learn. An example of Roman Numerals and their com-

ponents can be viewed in Figure 1. Recent state-of-the-art

approaches decompose the numeral prediction task to the

simultaneous prediction of those 6 components [5–9].

Most deep learning approaches to Roman Numeral anal-

ysis are inspired by work in audio classification, cutting

a score into fixed-size chunks (in terms of some constant

score time unit; e.g., a 32nd note) and using these as input

to deep models. Using this quantized time frame repre-

sentation, [6] introduced a CRNN architecture to predict

Roman Numerals. Other work has continued to build on the

latter by introducing more tasks to improve performance

such as the AugmentedNet model [7], or introducing intra-

dependent layers to inform in an orderly fashion the predic-

tion of one task with the previously predicted task, such as

the model introduced by [8]. Other architectures, such as

Figure 2. Different representations of the score excerpt

shown in the middle. Top: quantized time frame representa-

tion, bottom: graph representation.

the CSM-T model, have demonstrated good results by intro-

ducing modular networks which treat a score as a sequence

of notes ordered first by onset and then by pitch [9].

Should a musicologist perform music analysis on a piece

of music, they would consider the individual notes exist-

ing in the score. Thus, a time frame representation would

come across as unnatural for symbolic music and in partic-

ular for such an analysis task. In this paper, we present a

method that no longer treats the score as a series of quan-

tized frames but rather as a partially ordered set of notes

connected by the relations between them, i.e., a graph. A

visual comparison of the two representations is shown in

Figure 2. Recently, modeling scores as graphs has also been

demonstrated to be beneficial for problems such as expres-

sive performance generation [10], cadence detection [11],

voice separation [12], or boundary detection [13].

Automatic Roman Numeral analysis, as a multitask prob-

lem, is mostly tackled with hard parameter-sharing models.

These models share part of the model across all tasks as an

encoder, and then the common embeddings are branched

to a classification model per task [6–8]. However, some

approaches separate tasks from this paradigm to a more

modular or soft parameter sharing approach [9].

In the field of multitask learning, a lot of research has

been done on the problem of conflicting gradients during

backpropagation in hard parameter-sharing models. Issues

with multi-objective optimization have been early addressed

by Zhang et al. [14] and recent solutions have been pro-

posed for the multitask setting in the form of dynamic task

prioritization [15], gradient normalization [16], rotation

matrices [17], or even game-theoretic approaches [18]. In

our work, we experimentally evaluate some of these tech-

niques in the multitask setting to investigate whether Roman

Numeral analysis subtasks conflict with each other (see Sec-

tion 5.2).
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Figure 3. The proposed Architecture Chord-GNN

3. METHODOLOGY

3.1 Roman Numeral Analysis

We already discussed, in Section 2, how Roman Numeral

analysis can be viewed as a multi-task problem. In this

section, we describe in detail the additional tasks introduced

by [7] that we also use for training and prediction. First,

let us assume that the prediction can be broken down into

specific time points, and each time point is attributed to a

unique onset in the score.

The Roman Numeral prediction can be viewed as a si-

multaneous prediction of the local key, degree (primary

and secondary), quality, inversion, and root. Each one of

these tasks is a categorical, multiclass classification prob-

lem. However, [7] indicated that only three tasks would be

sufficient for 98% of the Roman Numeral annotations in

our dataset (detailed in Section 4.1). These three tasks com-

prise the prediction of a restricted vocabulary of common

Roman Numeral symbols in combination with the local key

and the inversion. We refer to Roman Numeral prediction

involving the 5 tasks as conventional RN, and the combined

prediction of key, inversion, and restricted RN vocabulary

alternative RN, as RNalt, in accordance with [7].

Several other tasks have been introduced that have been

shown to improve the performance of related models [7].

These include the Harmonic Rhythm, which is used to infer

the duration of a Roman Numeral at a given time point; the

Tonicization task, a multiclass classification task that refers

to a tonicized key implied by the Roman Numeral label and

is complementary to the local key; the Pitch Class Sets task,

which includes a vocabulary of different pitch class sets,

and the Bass task, which aims to predict the lowest note in

the Roman Numeral label.

3.2 Graph Representation of Scores

Our approach to automatic Roman Numeral analysis no

longer treats the score as a sequence of quantized time

frames but rather as a graph, which permits us to specify

note-wise information such as pitch spelling, duration, and

metrical position. We use graph convolution to model inter-

dependencies between notes. We model our score generally

following Karystinaios and Widmer [11], but we opt for a

heterogeneous graph convolution approach, i.e., including

different edge relations/types. Furthermore, we develop an

edge contraction pooling layer that learns onset-wise rep-

resentations from the note-wise embeddings and therefore

yields a sequence.

After the edge contraction, we follow [6–8] by adding

to the graph convolution a sequence model for the hard-

sharing part of our model, and simple shallow multi-layer

perceptron heads for each task. In essence, we replace the

CNN encoder that works on quantized frames of the score

in previous approaches, with a graph convolutional encoder

followed by an edge contraction layer. Our proposed archi-

tecture is shown in Figure 3.

The input to the GNN encoder is an attributed graph G =
(V,E,X) where V and E denote its node and edge sets and

X represents the node feature matrix, which contains the

features of the notes in the score. For our model, we used

pitch spelling, note duration, and metrical position features.

Given a musical piece, the graph-building process cre-

ates a set of edges E, with different relation types R. A

labeled edge (u, r, v) of type r between two notes u, v be-

longs to E if the following conditions are met:

• notes starting at the same time:

on(u) = on(v) −→ r = onset

• note starting while the other is sounding: on(u) >
on(v) ∧ on(u) ≤ on(v) + dur(v) −→ r = during

• note starting when the other ends:

on(u) + dur(u) = on(v) −→ r = follow

• note starting after a time frame when no note is sound-

ing: on(u) + dur(u) < on(v) ∧ ∄v′ ∈ V, on(v′) <
on(v) ∧ on(v′) > on(u) + dur(u) −→ r = silence

3.3 Model

In this section, we introduce and describe ChordGNN, a

Graph Convolutional and Recurrent Neural Network. The

structure of the network is visually outlined in Figure 3.

ChordGNN uses heterogeneous graphSAGE [19] convolu-

tional blocks defined as:

h
(l+1)
Nr(v)

= mean
(

{hl
u, ∀u ∈ Nr(v)}

)

h
(l+1)
vr

= σ
(

W · concat(hl
v,h

l+1
Nr(v)

)
)

h
(l+1)
v =

1

|R|

∑

r∈R

h
(l+1)
vr

(1)
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where h
(0)
v = xv and xu is the input features for node

u, N (u) are the neighbors of node u, and σ is a ReLU

activation function. We name the output representations of

all nodes after graphSAGE convolution H = {h
(L)
u | u ∈

V } where L is the total number of convolutional layers.

Given the hidden representation H of all nodes, and

onset edges EOn = {(u, v) | on(u) = on(v)}, the on-

set edge contraction pooling is described by the following

equations: first, we update the hidden representation with

a learned weight, H ′ = HW (cpool). Subsequently we need

to unify the representations for every node u, such that

∀v ∈ NOn(v), h
(cp)
u = h

(cp)
v :

h(cp)
u = hu +

∑

v∈NOn(v)

hv (2)

where, hu and hv belong to H ′. Subsequently, we filter the

vertices:

V ′ = {v ∈ V | ∀u ∈ V, (v, u) ∈ EOn =⇒ u /∈ V ′} (3)

Therefore, H(cp) = {h
(cp)
u | ∀u ∈ V ′} are the rep-

resentations obtained. Sorting the representations by the

onset on which they are attributed we obtain a sequence

S = [h
(cp)
u1

, h
(cp)
u2

, . . . h
(cp)
uk

] such that on(u1) < on(u2) <
· · · < on(uk).

The sequence S is then passed through an MLP layer

and 2 GRU layers. This concludes the hard-sharing part of

our model. Thereafter, an MLP head is attached per task,

as shown in Figure 3.

For training, we use the dynamically weighted loss in-

troduced by [20]. The total loss Ltot of our network is

calculated as a weighted sum of the individual losses for

every task, where the weights are learned during training:

Ltot =
∑

t∈T

Lt ∗
1

2γ2
t

+ log(1 + γ2
t ) (4)

where T is the set of tasks; Lt is the cross-entropy loss

relating to task t; the γt are learned scalars that give the

weight for each task t; and the log expression is a regular-

ization term [20].

Figure 4. Post-processing of Roman Numeral predictions.

3.3.1 Post-processing

We enhance our model with a post-processing phase after

the model has been trained. The post-processing phase com-

bines the logits of all tasks’ predictions by concatenating

them and, then, feeds them to a single-layer bidirectional

LTSM block. Then, again the embeddings of the sequential

block are distributed to 11 one-layer MLPs, one for each

task. The post-processing block is sketched in Figure 4.

4. EXPERIMENTS AND CORPORA

In the experiments, we compare our model, ChordGNN,

with other recent models for automatic Roman Numeral

analysis. We run experiments with our model in the ex-

act same way as described in the paper [7], including the

specific data splits, so that our results are directly compa-

rable to the figures reported there. A detailed comparison

of the results will be given in Table 1. Furthermore, we

develop variants of our model using proposed techniques

such as NADE [8], and post-processing of the chord pre-

dictions. We report a configuration study of our model on

the use of gradient normalization techniques and NADE

that should improve results on Multi-Task learning scenar-

ios and avoid common Multi-Task Learning problems such

as conflicting gradients. Lastly, we compare our model

with the updated version v1.9.1 of the state-of-the-art model

Augmented-Net [21] and datasets.

4.1 Datasets

For training and evaluation, we combined six data sources

into a single "Full" Dataset of Roman Numeral annota-

tions in accordance with [7]: the Annotated Beethoven Cor-

pus (ABC) [22]; the annotated Beethoven Piano Sonatas

(BPS) dataset [5]; the Haydn String Quartets dataset

(HaydnSun) [23]; the TAVERN dataset [24]; a part of

the When-in-Rome (WiR) dataset [25, 26]; and the Well-

Tempered-Clavier (WTC) dataset [25] which is also part of

the WiR dataset.

Training and test splits for the full dataset were also

provided by [7]. It is worth noting that the BPS subset splits

were already predefined in [5]. In total, approximately 300

pieces were used for training, and 56 pieces were used

for testing, proportionally taken from all the different data

sources. We draw a distinction for the BPS test set, which

includes 32 Sonata first movements and for which we ran

an additional experiment. The full test set also includes the

7 Beethoven piano sonatas.

In addition to the above datasets, we include data aug-

mentations identical to the ones described in [7]: textur-

ization and transposition. The texturization is based on a

dataset augmentation technique introduced by [27]. The

transposition augmentation boils down to transposing a

score to all the keys that lie within a range of key signatures

that have up to 7 flats or sharps. It should be noted that the

augmentations are only applied in the training split.

For our last experiment (to be reported on in Section 5.3

below), we add additional data that were recently introduced

by [21]. The additional data include the annotated Mozart
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Model Key Degree Quality Inversion Root RN RN (Onset) RNalt

B
P

S
Micchi (2020) 82.9 68.3 76.6 72.0 - 42.8 - -

CSM-T (2021) 69.4 - - - 75.4 45.9 - -

AugNet (2021) 85.0 73.4 79.0 73.4 84.4 45.4 - 49.3

ChordGNN (Ours) 79.9 71.1 74.8 75.7 82.3 46.2 46.6 48.6

ChordGNN+Post (Ours) 82.0 71.5 74.1 76.5 82.5 49.1 49.4 50.4

F
u

ll

AugNet (2021) 82.9 67.0 79.7 78.8 83.0 46.4 - 51.5

ChordGNN (Ours) 80.9 70.1 78.4 78.8 84.8 48.9 48.4 50.4

ChordGNN+Post (Ours) 81.3 71.4 78.4 80.3 84.9 51.8 51.2 52.9

Table 1. Model comparison on two different test sets, the Beethoven Piano Sonatas (BPS), and the full test set. RN stands

for Roman Numeral, RNalt for the alternative Roman Numeral computations discussed in Section 3.1. RN(Onset) refers

to onset-wise prediction accuracy, all other scores use the CSR score (see Section 5). Note that model CSM-T reports Mode

instead of Quality.

Piano Sonatas (MPS) dataset [28] for which we also applied

the aforementioned augmentations.

4.2 Configuration

For all our experiments, we train our network with the

AdamW optimizer. We fix our architecture with a hidden

size of 256, a learning rate of 0.0015, a weight decay of

0.005, and a dropout of 0.5 which is applied to each learning

block of our architecture.

5. RESULTS

As an evaluation metric, we use Chord Symbol Recall

(CSR) [29] where for each piece, the proportion of time

is collected during which the estimated label matches the

ground truth label. We apply the CSR at the 32nd note

granularity level, in accordance with [6, 7, 9].

5.1 Quantitative Results

In the first experiment, which compares our ChordGNN to

existing state-of-the-art approaches, we evaluate the full

dataset, but also the annotated Beethoven Piano Sonatas

(BPS) [5] subset, which many previous approaches had also

used. The results are shown in Table 1. We present the CSR

scores (where they are applicable) for Local Key, Degree,

Quality, Inversion, Root, conventional Roman Numeral, and

Alternative Roman Numeral (see Section 3). Furthermore,

we include the onset-wise accuracy score for our models’

conventional Roman Numeral predictions.

On the BPS subset, we compare our model ChordGNN

with the Micchi (2020) model [6], the CSM-T (2021)

model [9] and the AugmentedNet 2021 model [7]. Our

results on Roman Numeral prediction surpass all previous

approaches. Note that the AugmentedNet model exhibits

higher prediction scores on the individual Key, Degree,

Quality, and Root tasks, which are used jointly for the

prediction of the Roman numeral. These results indicate

that our model obtains more meaningfully interrelated pre-

dictions, with respect to the Roman numeral prediction,

resulting in a higher accuracy score.

Moreover, we compare ChordGNN to AugmentedNet on

the full test dataset. Our model surpasses AugmentedNet

Variant RN RNalt

ChordGNN (Baseline) 46.1± 0.003 47.8± 0.007
ChordGNN + WLoss 48.9± 0.001 50.4± 0.010
ChordGNN + Rotograd 45.5± 0.003 47.1± 0.005
ChordGNN + R-GradN 45.2± 0.006 46.7± 0.005
ChordGNN + NADE 48.2± 0.005 49.9± 0.005

Table 2. Configuration Study: Chord Symbol Recall on

Roman Numeral analysis on the full test set. RN stands for

Roman Numeral, RNalt refers to the alternative Roman Nu-

meral computations discussed in section 3.1. WLoss stands

for the dynamically weighted loss described in Section 3,

and R-GradN stands for Rotograd with Gradient Normal-

ization. Every experiment is repeated 5 times with the same

ChordGNN model as Table 1 without post-processing.

with and without post-processing in all fields apart from

local key prediction and quality. Our model obtains up

to 11.6% improvement in conventional Roman Numeral

prediction.

In both experiments, post-processing has been shown

to improve both RN and RNalt. However, ChordGNN

without post-processing already surpasses the other models.

5.2 Configuration Study

For a systematic study of multitask training, we investi-

gated the effects of extension modules, gradient normal-

ization techniques, and learnable weight loss. In detail,

we test 5 configurations using as baseline the ChordGNN

model (without post-processing) with standard CE loss and

no weighing. Furthermore, we test our proposed architec-

ture using the dynamically weighted loss described in Sec-

tion 3.3 (same as the model in Table 1), Rotograd [17] and

GradNorm [16] for Gradient Normalization, and NADE [8].

The models are run on the Full data set described above

and averaged over five runs with random initialization. The

results, summarized in Table 2, suggest that using the dy-

namically weighted loss yields better results compared to

other methods such as the Baseline or Gradient Normaliza-

tion techniques. Furthermore, the dynamically weighted

loss is comparable to NADE but also more robust on Con-

ventional Roman Numeral prediction on our datasets.
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Figure 5. A comparison between the human annotation, AugmentedNet, and ChordGNN on a passage of Haydn’s string

quartet op.20 No.3 movement 4. The red (wrong) markings on Human Analysis and AugNet (2022) are from [21]

5.3 Latest developments

Our last experiment focuses on specific developments that

have very recently been published in Nápoles López’s Ph.D.

thesis [21]. In the thesis, three additional tasks, related to

predicting the components of a canonical representation of

the current chord, as implied by the Roman Numeral, were

proposed and the dataset was extended with the Annotated

Mozart Piano Sonatas (MPS) corpus [28], as mentioned in

Section 4.1 above.

To test the relevance of these updates, we trained an

adapted version of our model, now with 11+3=14 individ-

ual tasks and including the Mozart data. It turns out that

the updated model improves significantly in performance,

achieving a 53.5 CSR score on conventional Roman Nu-

meral (compare this to row "ChordGNN (Ours)" in Table

1). Furthermore, post-processing can improve the results by

up to two additional percentage points. 1

5.4 A Musical Example

In Figure 5, we look at a comparison between the human an-

notations, AugmentedNet and Chord-GNN predictions (The

musical excerpt is taken from Nápoles López’s thesis [21],

and the predictions relate to the new models trained as de-

scribed in the previous section.). Marked in red are false

predictions, and marked in yellow are correct predictions

of the model with wrong ground-truth annotations. Both

models’ predictions are very similar to the human analysis.

However, our model correctly predicts the initial pickup

measure annotation. In measure 2, the ground truth anno-

tation marks a tonic in first inversion; however, the viola

at that point is lower than the cello and therefore the chord

is actually in root position. Both models obtain a correct

prediction at that point. Subsequently, our model predicts

a harmonic rhythm of eighth notes, which disagrees with

the annotator’s half-note marking. Analyzing the underly-

ing harmony in that passage, we can justify our model’s

choices.

1 Unfortunately, we cannot directly compare these numbers to [21], as
their results are not reported in comparable terms.

The human annotation suggests that the entire second

half of the 2nd measure represents a viio chord. However,

it should not be in the first inversion, as the cello plays

an F# as the lowest note (which is the root of viio). The

AugNet analysis faces the same issue, in contrast with the

predictions of ChordGNN. However, there are two conflict-

ing interpretations of the segment. First, the viio on the

third beat is seen as a passing chord between the surround-

ing tonic chords, leading to a dominant chord in the next

measure. Alternatively, the viio could already be part of

a prolonged dominant harmony (with passing chords on

the offbeats) leading to the V 7. The ChordGNN solution

accommodates both interpretations as it doesn’t attempt to

group chords at a higher level, treating each eighth note as

an individual chord rather than a passing event. The other

two solutions prefer the second option.

6. CONCLUSION

In this paper, we presented ChordGNN, a model for auto-

matic Roman Numeral analysis in symbolic music, based on

a note-level, graph-based score representation. We showed

that ChordGNN improves on other state-of-the-art models,

and that post-processing can further improve the accuracy

of the predictions. A configuration study suggests that gra-

dient normalization techniques or techniques for carrying

prediction information across tasks are not particularly ben-

eficial or necessary for such a model.

Follow-up work will focus on strengthening the robust-

ness of our models by pre-training with self-supervised

methods on large corpora. We believe that such pre-training

can be beneficial for learning helpful intrinsic musical in-

formation. Such a step is crucial since more data improves

predictions but Roman Numeral annotations are hard to

find or produce. Moreover, we aim to enrich the number of

tasks for joint prediction by including higher-level analyti-

cal targets such as cadence detection and phrase boundary

detection. Finally, we aim to extend our method to the audio

domain.
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