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ABSTRACT

Synthesizers are widely used electronic musical instru-
ments. Given an input sound, inferring the underly-
ing synthesizer’s parameters to reproduce it is a diffi-
cult task known as sound-matching. In this work, we
tackle the problem of automatic sound matching, which is
otherwise performed manually by professional audio ex-
perts. The novelty of our work stems from the introduc-
tion of a novel differentiable synthesizer-proxy that en-
ables gradient-based optimization by comparing the in-
put and reproduced audio signals. Additionally, we in-
troduce a novel self-supervised finetuning mechanism that
further refines the prediction at inference time. Both con-
tributions lead to state-of-the-art results, outperforming
previous methods across various metrics. Our code is
available at: https://github.com/inversynth/
InverSynth2.

1. INTRODUCTION AND RELATED WORK

Sound synthesis has been an active research field since the
end of the previous century [1]. Given a query audio in-
put, the task of crafting a specific sound is known as sound

matching. Synthesizer sound matching, also known as in-

verse synthesis, involves carefully tuning parameters from
an exponentially large number of possible configurations-
a task mostly reserved for professional audio experts. This
paper presents a novel algorithmic approach for automated

sound matching.
Algorithmic approaches for inverse synthesis can

be loosely categorized into search-based methods and
modeling-based methods [2]. Search-based methods of-
ten utilize genetic algorithms (GA) which are based on
principles of Darwinian evolution to determine the opti-
mal synthesizer configurations. For instance [3] initiated a
set of randomly sampled configurations and used GA op-
timization to reconstruct the original audio signal. Other
search-based methods include Particle Swarm Optimiza-
tion (PSO) [4] and Hill-Climbing [5]. Search-based meth-
ods can employ different objectives such as mel-frequency
cepstral coefficients (MFCCs) or a combination of mul-
tiple objectives [6, 7]. However, optimizing configura-
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tions through search-based methods can be both resource-
intensive and time-consuming for every sound sample.
Consequently, the rise of deep learning techniques has led
to a shift from search-based methods to model-based ones,
which avoid the previously mentioned drawbacks. How-
ever, search-based methods still possess a unique advan-
tage: they can establish a loss term that directly contrasts
the reconstructed audio signal with the input signal.

The aforementioned advantage is absent in most
modeling-based methods, as they usually cannot propagate
gradients through an external, commercial synthesizer. As
a result, they depend on setting an optimization goal fo-
cused on reconstructing the parameters rather than the re-
produced signal. In general, modeling-based methods em-
ploy deep learning in order to predict a synthesizer’s con-
figuration based on the input audio signal. For example,
[8] employed long short-term memory (LSTM) networks
for predicting the parameters in FM synthesizers. Inver-
Synth (IS) [9] employed strided convolution neural net-
works (CNNs) to estimate a synthesizer’s parameters as
a multi-objective classification problem. When compared
to the LSTMs approach of [8], IS provides improved accu-
racy with the ability to scale for longer audio sequences.
Another direction involves employing variational infer-
ence [10] and normalizing flows [11, 12] to automatically
tune an open-source replica of the Yamaha DX7 synthe-
sizer [13]. Finally, [14–16] introduce a different versions
of audio synthesizer models for sound matching.

A completely different direction for sound matching
and synthesis is through neural synthesizers [17–22]. For
example, in [19] the authors train Generative Adversarial
Networks to synthesize sounds that simulate natural audio
samples. However, these directions are inherently different
from the current line of work, as they do not deal with the
problem of tuning existing musical synthesizers. Instead,
these works suggest alternatives to familiar synthesizers,
which may be useful for future applications but are less
relevant to mainstream musicians that use existing com-
mercial synthesizers.

In this paper, we present InverSynth II (IS2) - an in-
novative inverse-synthesis model that introduces a differ-
entiable synthesizer-proxy capable of learning to “imitate”
the behavior of any given synthesizer. This allows for a dif-
ferentiable relationship between the synthesizer’s parame-
ters and the produced audio signal. As a result, IS2 learns
to focus on the synthesizer parameters that have more im-
pact on the reproduced signal. Our evaluations indicate
that this approach leads to a better reconstruction of the
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original audio signal in terms of spectral loss and human
perception.

Our contributions are as follows: (1) We introduce IS2
that effectively incorporates the synthesizer’s functionality
into the computational graph. By learning a differentiable
synthesizer-proxy, IS2 facilitates self-supervision based on
the difference between the input and reproduced audio sig-
nals. This is in contrast to previous model-based works
that optimized on the predicted synthesizer parameters
alone [8, 9, 23]. (2) We introduce a novel self-supervised
finetuning technique that utilizes the learned synthesizer-
proxy to further refine predictions at inference time. (3) We
compare IS2 against the state-of-the-art methods from [10]
and [9] on the three datasets, including the datasets from
both of these works. Our findings show that IS2 outper-
forms both methods on all datasets, across all metrics.

2. INVERSYNTH II

2.1 Problem Setup

Let x ∈ X be the audio signal i.e., raw waveform, Short-
time Fourier transform (STFT) spectrogram, etc. Let f :
Y → X be a synthesizer function that generates a sig-
nal f(y) ∈ X according to the parameters configuration
y ∈ Y , where y encodes the exact value for each of the
configurable synthesizer parameters. For example, these
parameters determine the oscillators’ waveform types, the
amplitudes’ values, modulation indexes, ADSR envelopes,
filter cutoff frequency, etc. The inverse-synthesis task is to
learn an encoder function eθ : X → Y , parameterized by
θ, that receives an audio x ∈ X and predicts the parameters
configuration eθ(x) ∈ Y s.t.

f(eθ(x)) = x′ ≈ x. (1)

2.2 The IS Model

The IS model from [9] receives an input signal x and
aims at inferring a parameters configuration ŷ which best
matches the true yet unknown parameters configuration y
that produced x = f(y). To this end, a dataset D =
{(xi, yi)}

N
i=1

is generated, where yi is the synthesizer’s
configuration used by f to generate the sound xi, hence
f(yi) = xi. IS trains an encoder network eθ to predict yi
from xi by minimizing the objective

θ∗ = argmin
θ

N∑

i=1

Lp(eθ(xi), yi), (2)

where Lp : Y × Y → R is the parameters loss that quan-
tifies the difference between the predicted configuration
eθ(xi) and the ground truth configuration yi. In [9], each
synthesizer parameter was treated as a categorical vari-
able (continuous parameters were quantized), hence solv-
ing multiple classification problems simultaneously (one
for each parameter). Accordingly, the loss Lp was the sum
of P cross-entropy (CE) losses, where P is the number of
the synthesizer parameters.

2.3 The IS2 Model

IS does not optimize on the actual reproduced audio sig-
nal. Instead, it only optimizes on the parameters con-
figuration according to Eq. 2. However, minimizing Lp

is just a proxy to the original task from Eq. 1 that aims
at minimizing the difference between the original sig-
nal x and the reproduced signal f(eθ(x)). This obser-
vation motivates an additional self-supervised loss term
La : X×X → R, namely the audio loss, that measures the
discrepancy between the input signal x and the reproduced
signal f(eθ(x)):

θ∗ = argmin
θ

N∑

i=1

Lp(eθ(xi), yi) + λLa(f(eθ(xi)), xi),

(3)
where λ is a hyperparameter. The audio loss term La

provides feedback on the quality of the reproduced signal
f(eθ(xi)) itself, hence better aligns with the ultimate task
of Eq. 1.

Yet, a key challenge arises - how to backpropagate the
error induced by La via f? A naive approach may pro-
pose implementing the synthesizer f as part of the com-
putational graph. However, this approach suffers from
several limitations: First, it requires a specific implemen-
tation per synthesizer and hence does not scale. Sec-
ond, most commercial synthesizers are not open-source,
and even if the source code was provided, it would still
require rewriting of the entire codebase to support an
auto-differentiation platform (e.g., PyTorch). Furthermore,
some synthesizer functionalities are not differentiable and
require workarounds that may incur discrepancies and hin-
der gradient-based optimization.

To this end, IS2 introduces a synthesizer-proxy decoder
network dφ : Y → X , parameterized by φ, that serves as a
differential replacement to the true synthesizer function f .
dφ is trained to minimize La w.r.t. φ over the dataset D,
which leads to the IS2 training objective

Θ∗ = argmin
Θ

N∑

i=1

Lp(eθ(xi), yi) + λLa(dφ(eθ(xi)), xi),

(4)
with Θ = {θ, φ}.

2.4 IS2 Training

IS2 employs stochastic gradient descent optimization [24]
on the objective from Eq. 4 as depicted in Fig. 1(a) (the
exact implementation and optimization details will follow
in Secs. 2.6 and 3.2). We apply a K-fold cross-validation
procedure over the dataset D, where each fold defines dif-
ferent training, validation, and test sets. For each fold, we
train the IS2 model on the training set and monitor the fol-
lowing measure on the validation set V ⊂ {1..N}:

Lf
V :=

∑

i∈V

La(f(eθ(xi)), xi). (5)

Finally, the best-performing model (in terms of Lf
V across

all epochs) is used for reporting results on the test set.
Note that the predicted parameters eθ(x) in Eq. 5

are propagated to the true synthesizer f and not to the
synthesizer-proxy dφ (see Fig. 1(b)). This enables select-
ing the model that minimizes the discrepancy between x
and f(eθ(x)), which aligns with the ultimate task of Eq. 1.
Yet, f does not participate in the optimization objective
(Eq. 4) since it is not necessarily differentiable. Instead,
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IS2 Training
 IS2 Inference


Figure 1: (a)-(b) depict the IS2 training phase (Sec. 2.4) that utilizes the differentiable synthesizer-proxy dφ, while monitor-
ing for the best model via the true synthesizer f . (c)-(d) depict the IS2 inference phase (Sec. 2.5) that employs ITF, utilizing
the optimized dφ∗ for improved parameters prediction on the specific test example. Again, f is used for monitoring.

the audio loss term La in Eq. 4 utilizes dφ as a differen-
tiable proxy to f in order to propagate gradients as part of
the optimization process.

2.5 IS2 Inference

A unique feature of IS2 is the ability to improve the pre-
dictions at inference time, by employing Inference-Time
Finetuning (ITF). Given a test input xt, we utilize the au-
dio loss La for leveraging self-supervision from xt, and
refine the prediction specifically for xt. To this end, we
freeze the trained decoder parameters φ∗ (Eq. 4) and fine-
tune the trained encoder parameters θ∗ to obtain finetuned
parameters θt:

θt = argmin
θ

Lt + λBLB , (6)

where

Lt = La(dφ∗(eθ(xt)), xt),

LB =
1

|B|

∑

i∈B

Lp(eθ(xi), yi) + λLa(dφ∗(eθ(xi)), xi),

and B ⊂ {1..N} is a subset of indexes from the training set
(a training batch). While one could optimize only Lt w.r.t.
θ, we found that the inclusion of LB serves as a regular-
ization (controlled by the hyperparameter λB) that leads to
more accurate predictions. This can be explained by the
fact that LB enforces the encoder to predict accurate con-
figurations for the examples in B, effectively safeguard-
ing the encoder from forgetting what it has learned during
the training phase (Sec. 2.4) and avoid overfitting the test
example xt. In practice, the ITF procedure alternates be-
tween sampling a batch of examples from the training set
B ⊂ {1..N}, and performing gradient descent update to
θ according to the objective in Eq. 6, until either conver-
gence w.r.t. Lf

t := La(f(eθ(xt)), xt) is met or the number
of alternations exceeds a prescribed threshold. ITF opti-
mization and monitoring are depicted in Fig. 1(c)-(d).

It is important to clarify that ITF is applied per test
example, i.e., for each test example xt, we first initialize

θ ← θ∗, where θ∗ are the optimal encoder parameters ob-
tained from the IS2 training procedure (Eq. 4). Then, ITF
alternations are employed according to Eq. 6 to obtain fine-
tuned encoder parameters θt that might improve Lf

t . How-
ever, improvement is not guaranteed due to an inherent dis-
crepancy that may exist between the synthesizer-proxy de-
coder dφ∗ (used in Lt) and the synthesizer f (used in Lf

t ).
Therefore, if none of the ITF alternations yield improve-
ment to Lf

t , we fallback to the prediction obtained by the
originally trained encoder eθ∗(xt) (that serves as a starting
point for the ITF procedure).

2.6 IS2 Implementation

In [9], various encoder implementations were investigated
and the spectrogram-based strided CNN encoder stood out
as the best performer. Following this finding, we imple-
ment the encoder eθ and decoder dφ as strided CNNs. Ac-
cordingly, x ∈ X stands for the processed log-magnitude
spectrogram or mel-spectrogram domain (where the spec-
trogram is obtained by the application of the STFT to the
waveform), and La is set to the Mean Absolute Error,
hence measuring the spectral difference between the input
and reproduced signals.

The synthesizer parameters configuration is encoded by
a super-vector y ∈ Y that concatenates one-hot vectors and
normalized scalars representing the categorical and contin-
uous parameters, respectively. Accordingly, the parame-
ters lossLp is set to the average of the cross-entropy and L2
losses for categorical and continuous parameters, respec-
tively. The exact details of the data processing, data repre-
sentation, and hyperparameters settings appear in Sec. 3.

3. EXPERIMENTAL SETUP AND RESULTS

3.1 Datasets, preprocessing, and data representation

In this study, we present findings from analyses conducted
on three distinct datasets. As a consequence of space con-
straints, it is not feasible to detail all the numerous con-
figurable parameters of every synthesizer utilized in our
experiments. Nevertheless, a comprehensive account of
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Metric Flow IS IS2xITF IS2
FM Dataset

Spec (x100) 4.89 1.61 1.54 1.51
Melspec (x100) 193.93 56.77 54.65 53.84
MFCC (x100) 73.49 28.83 27.74 27.29
SC 0.0941 0.0383 0.0367 0.0361
ACC (%) 93.01 93.89 93.97 94.04

DX7 Dataset
Spec (x100) 65.31 58.83 58.59 58.18
Melspec (x100) 24.04 19.29 19.37 19.26
MFCC (x100) 1502.2 1309.5 1300.4 1280
SC 1.0472 0.8578 0.8594 0.8532
ACC (%) 85.36 86.07 86.34 86.74
MAEparam (x100) 10.77 9.79 9.68 9.56

TAL Dataset
Spec (x100) 0.44 0.1809 0.177 0.173
Melspec (x100) 106.5 68.06 67.07 64.64
MFCC (x100) 8.95 5.85 5.72 5.8
SC 0.51 0.512 0.467 0.424
ACC (%) 80.94 80.62 80.73 81.17

Table 1: Aggregated results on all datasets and metrics.

each synthesizer parameter can be found in the supplemen-
tary material accompanying this manuscript. The datasets
which were used in this research are as follows: (1) FM: is
based on the FM synthesizer implementation that is avail-
able in IS2 GitHub repository. The synthesizer is com-
posed of a FM oscillator, AM modulation, and low-pass
filter. It includes 9 configurable parameters, each repre-
sented by a categorical variable. Continuous parameters
were discretized and binned to create a finite set of values.
A dataset of 180K audio samples (1 second, 16KHz) was
generated based on a random sampling of parameter con-
figurations. Samples were transformed into 257x129 spec-
trograms using log-magnitude STFT (with window size
512 and hop size 128) followed by normalization to [-
1,1]. (2) DX7: is the dataset from [10] which is based
on the Dexed synthesizer 1 which is a virtual replica of
the Yamaha DX7 synthesizer with 144 configurable pa-
rameters (represented by 54 categorical and 90 continu-
ous variables). It contains 30K audio samples (3 seconds,
22.05KHz). Each sample was transformed into a 257x347
mel-spectrogram (257-bins) of the log-magnitude STFT
(with window size 1024 and a hop size 256), followed by
normalization to [-1,1]. (3) TAL is based on the commer-
cial synthesizer: TAL-NoiseMaker 2 . It consists of 180k
audio samples generated using 9 configurable parameters
controlling the oscillator, LFO1, LFO2, and cutoff param-
eters. Each sound has a duration of 1 second sampled at
16kHz and is converted into a 257x129 spectrogram. The
spectrograms are normalized to the range [-1, 1] using the
same method as the FM synthesizer dataset. The code for
the generation of the datasets, including the parameter dis-
cretization process is available in our GitHub repository.

The above datasets encompass a broad spectrum of
sounds that vary from basic sine waves to intricate wave-
forms with a wealth of harmonics. The TAL Noisemaker
and FM synthesizer datasets comprise a range of sounds in-
cluding bass, leads, pads, plucks, and percussion, while the
DX7 dataset comprises percussive, bell-like, and metallic
sounds, in addition to rich pads and complex bass sounds.

1 https://github.com/asb2m10/dexed
2 https://tal-software.com/products/

tal-noisemaker

Our GitHub repository includes scripts that can reproduce
the these datasets.

3.2 Evaluated methods and hyperparameters setting

The following models were evaluated: (1) IS2: our model
from Sec. 2. eθ and dφ are implemented by strided and
transposed CNNs with 9 hidden LeakyReLU activated lay-
ers and Batch Normalization [25] (the exact hyperparam-
eters which were chosen for each layer can be seen in our
GitHub code). The IS2 objective (Eq. 4) was optimized
with λ = 1 using the Adam optimizer [26] with β1 = 0.9,
β2 = 0.99, batch size 64 and learning rate scheduling
from 10−4 to 10−6 for 100 epochs. While training, we
monitored Lf

V (Eq. 5) on the validation set, and the best-
performing model was selected eventually. For each test
sample, we employed 30 ITF alternations according to the
objective from Eq. 6, with λB = 1, and B is a stochas-
tic sample of 64 examples drawn randomly from the train-
ing set at each alternation. Finally, L

f
t was monitored

for selecting the best result as explained in Sec. 2.5. (2)
IS2xITF: an ablated version of IS2, in which ITF is not
employed and the predictions are performed by the trained
encoder eθ∗ . (3) IS: the IS method from [9]. (4) Flow: the
method from [10] which is based on variational inference
with normalizing flows. We tuned hyperparameters for all
models using the validation set.

3.3 Evaluation metrics

We report the average results obtained by a 5-fold cross-
validation procedure with 80%-10%-10% (training, vali-
dation, test) splits, on the following metrics: (1) Spec: the
Mean Absolute Error (MAE) between the log-magnitude
STFTs of a - the signal reproduced by the application of
f to the predicted parameters configuration, and b - the
ground truth configuration signal. (2) Melspec: the MAE
between the mel-spectrograms of a and b. (3) MFCC: the
MAE between the 40-band MFCCs of a and b. (4) SC:
the Spectral Convergence [27] between a and b. Note that
SC was found less correlated with human perception [10],
nevertheless we report this metric for the sake of complete-
ness. (5) ACC: the accuracy of the predicted categorical
synthesizer parameters. (6) MAEparam: MAE between
the predicted and ground truth numerical synthesizer pa-
rameter values. This metric is reported for the DX7 dataset
only, as all parameters in the FM and TAL dataset are mod-
eled by categorical variables. Metrics (1)-(4) measure er-
rors in the reproduced signal f(eθ(x)), while metrics (5)-
(6) measure accuracy / error w.r.t. the ground truth param-
eter configurations.

To complete our evaluations, we also present the results
of a MOS (Mean Opinion Score) test [28] with N = 20.
The MOS test involves presenting a set of synthesized
sounds to a panel of listeners, who are then asked to rate
the sound quality of the reconstructed sound with respect to
the original sound using a standardized rating scale: [1−5].

3.4 Quantitative Results

Table 1 displays the results obtained by all methods
across all datasets and evaluation metrics. The ACC and
MAEparam are averages across all categorical and contin-
uous parameters, respectively. It is important to note that
the Flow results reported in [10] were replicated, and our

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

645



TAL Dataset FM Synth Dataset DX7 Dataset
IS2 IS2xITF Flow IS IS2 IS2xITF Flow IS IS2 IS2xITF Flow IS

Low (x100) 608 627 619 642 0.62 0.63 1.88 0.79 0.53 0.54 0.61 0.533
Mid (x100) 86.82 90.26 102 91.64 0.18 0.19 0.51 0.24 0.02658 0.02652 0.0338 0.0265
High (x100) 5.82 6.12 7.7 6.64 0.0036 0.0037 0.0224 0.0098 0.0038 0.0037 0.0043 0.0035
All bands (x100) 654 675 676 691 0.63 0.64 0.19 0.8 0.53 0.538 0.6 0.537

Table 2: Spectral analysis for different Mel-frequency bands (x100).

DX7 Param Type Flow IS IS2 IS2xITF

ALGORITHM cat 0.5758 0.6660 0.6676 0.6627
FEEDBACK cat 0.6938 0.7056 0.7179 0.7151
OSCKEYSYNC cat 0.8227 0.8269 0.8356 0.8356
LFOSPEED num 12.5070 11.5924 11.6528 11.6337
LFODELAY num 16.5244 15.0604 14.9376 14.8934

LFOPMDEPTH num 13.0251 11.7224 11.5284 11.5593
LFOAMDEPTH num 17.8000 17.7326 17.5715 17.6148
LFOKEYSYNC cat 0.8008 0.8112 0.8163 0.8150
LFOWAVE cat 0.7599 0.7622 0.7665 0.7618
PMODESENS cat 0.6214 0.6473 0.6598 0.6590
PITCHEGRATE1 num 17.6189 16.8161 16.6582 16.6706
PITCHEGRATE2 num 17.7838 16.7808 16.8625 16.8100
PITCHEGRATE3 num 18.2013 17.6938 17.4543 17.5203
PITCHEGRATE4 num 19.5772 18.6485 18.7511 18.7084
PITCHEGLEVEL1 num 6.2437 6.3104 6.3948 6.3948
PITCHEGLEVEL2 num 6.5503 6.8803 6.8803 6.8803
PITCHEGLEVEL3 num 6.8834 7.1543 7.1543 7.1543
PITCHEGLEVEL4 num 6.1773 6.4220 6.4220 6.4220
OP_EGRATE1 num 13.4020 12.2691 12.1219 12.1169

OP_EGRATE2 num 17.7775 16.8140 16.9248 16.8298
OP_EGRATE3 num 17.9113 17.0677 17.1096 17.0545

OP_EGRATE4 num 12.6359 11.8326 11.8028 11.7685

OP_EGLEVEL1 num 10.6051 10.7961 10.8860 10.9058
OP_EGLEVEL2 num 17.9278 16.8495 16.7416 16.7842
OP_EGLEVEL3 num 21.2140 20.3835 20.2471 20.2462

OP_EGLEVEL4 num 12.1882 15.1754 15.1754 15.1754
OP_OUTPUTLEVEL num 12.4545 11.5483 11.5102 11.5341
OP_MODE cat 0.9359 0.9404 0.9446 0.9430
OP_FCOARSE cat 0.6951 0.7486 0.7538 0.7513
OP_FFINE num 13.8020 13.3172 13.2250 13.2555
OP_OSCDETUNE cat 0.6578 0.7275 0.7346 0.7299
OP_BREAKPOINT num 16.3170 15.4886 15.5501 15.4929
OP_LSCALEDEPTH num 16.0303 16.0030 15.9739 16.0440
OP_RSCALEDEPTH num 16.3427 15.7286 15.6248 15.6984
OP_LKEYSCALE cat 0.8476 0.8505 0.8574 0.8526
OP_RKEYSCALE cat 0.8533 0.8541 0.8643 0.8580
OP_RATESCALING cat 0.7187 0.7528 0.7598 0.7579
OP_AMODSENS cat 0.9112 0.8987 0.9185 0.9052
OP_KEYVELOCITY cat 0.6777 0.7236 0.7290 0.7267
MEAN CAT - 0.7551 0.7796 0.7875 0.7838
MEAN NUM - 14.3 13.8434 13.8064 13.8067

Table 3: Aggregated DX7 parameters’ accuracy. The
functionality of each parameter is explained in the supple-
mentary materials (appears in our GitHub repository).

Param TAL Flow IS IS2 IS2xITF
x3_FilterCutoff (%) 86.08 72.01 75 72.8
x24_Osc2Waveform (%) 99.82 99.38 99.48 99.39
x20_Osc2Tune (%) 95 93.49 93.7 93.6
x26_Lfo1Waveform (%) 68.28 78.33 78.8 78.38
x28_Lfo1Rate (%) 47.54 52.93 53.34 52.97
x30_Lfo1Amount (%) 73.37 71.74 72.19 71.78
x27_Lfo2Waveform (%) 88.86 88.87 88.85 88.76
x29_Lfo2Rate (%) 84.77 84.56 84.67 84.59
x31_Lfo2Amount (%) 84.77 84.28 84.45 84.31
MEAN (%) 80.94 80.62 81.17 80.73

Table 4: TAL parameters’ accuracy. The parameters are
prefixed with “xAB”, where AB denotes the index of the
parameter within the synthesizer. The functionality of each
parameter is explained in the supplementary materials (ap-
pears in our GitHub repository).

Param FM Flow IS IS2 IS2xITF
osc1_wave (%) 99.98 99.94 99.94 99.94
osc1_freq (%) 91.26 98.7 98.83 98.81
osc1_mod_index (%) 93.08 96.43 96.5 96.45
lfo1_freq (%) 99.95 99.86 99.88 99.87
lfo1_wave (%) 99.52 98.75 98.69 98.67
am_mod_wave (%) 67.73 71.02 71.74 71.59
am_mod_freq (%) 86.23 82.71 82.88 82.86
am_mod_amount (%) 99.43 97.62 97.64 97.61
filter_freq (%) 99.98 99.93 99.95 99.94
MEAN (%) 93.02 93.89 94.01 93.97

Table 5: FM Synth parameters’ accuracy. The function-
ality of each parameter is explained in the supplementary
materials (appears in our GitHub repository).

Dataset Flow IS IS2xITF IS2

FM 4.7 4.85 4.6 5
DX7 1.35 2.45 3.28 3.5
TAL 3.87 3.37 3.85 3.95

Table 6: MOS test results. Scores on a scale of [1 − 5]
represent the perceptual reconstruction quality w.r.t. the
original audio.

results are consistent with the original findings. Table 1
demonstrates that our IS2 method outperforms the other
baselines in all metrics and datasets, except for the MFCC
score on the TAL datasets, where the ablated version of
IS2, IS2xITF, outperforms it. Furthermore, the results in-
dicate that the ablated version IS2xITF is highly effective
in comparison to previous baselines which highlights the
general utility of the IS2 architecture even without the ITF
phase. In the following section, we aim to provide a more
comprehensive analysis and interpretation of these results.

To provide additional perspective, we conducted the fol-
lowing analysis: We partitioned the 257 mel-spectrogram
bins into “Low”, “Mid”, and “High” equally sized mel-
frequency bands. Then, for each sound in the test set, we
computed the L2 loss between the reproduced version and
the ground-truth of each mel-frequency band. The results
for the different frequency bands, including the entire mel-
spectrogram (’All bands’) are presented in Table 2. First,
We observe that IS2 outperforms the other models on the
entire mel-spectrogram (’All bands’), across all datasets,
which is consistent with the results presented in Table 1
(note that Tables 1 and 2 report different metrics, i.e, MAE
vs. L2). Specifically, IS2 performs particularly well on low
frequency regime (’Low’). Arguably, this finding might be
explained later where we shall see that the IS2 model at-
tains the best loss in 4 out of 6 low-frequency oscillator
(LFO) parameters, which have a stronger impact on the
low bands. This calls for further research into the relation-
ship between parameter prediction accuracy and the mel-
spectrogram error.

In terms of the “Mid” band, the IS2 model demon-
strated superior performance on the TAL and FM datasets,
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whereas the IS model exhibited better results on the DX7
dataset. For the “High” band, different baselines achieved
the best outcomes. This observation is not surprising since
high frequencies typically undergo rapid changes and can
be less perceptible even to experienced listeners. Overall,
our findings indicate that the IS2 approach exhibits robust
performance across various datasets and frequency bands,
with exceptional accuracy in estimating low frequencies.

Next, we turn to evaluate the accuracy of predicting
each parameter specifically. The DX7 synthesizer con-
sists of two types of parameters: categorical, denoted as
“cat”, and numerical, denoted as “num”. To evaluate
performance, ACC was reported for categorical parame-
ters, while MAEparam was calculated for numerical pa-
rameters, as previously mentioned. The DX7 parameters
are further categorized into several groups, including Al-
gorithm, Feedback, Operators, Pitch Envelope Generator,
LFO, and Filter, with a comprehensive explanation of each
parameter available in the supplementary material. Ta-
ble 3 outlines the prediction results for the DX7 parame-
ters. Note that parameters beginning with the prefix “OP”
are an average aggregation of the six operators of the syn-
thesizer, as explained in the supplementary material.

The results reveal that the IS2 method consistently out-
performed other models in predicting all categorical pa-
rameters. Furthermore, the IS2 model also outperformed
other models in 9 out of 25 numerical parameters. No-
tably, the IS2xITF model performed best among all mod-
els for the “OP_EGRATEi” (i=1...4) numerical param-
eters, demonstrating superior performance even without
fine-tuning (ITF). Specifically, this model exhibited bet-
ter performance in all numerical parameters and outper-
formed other models in 5 out of 25 numerical parameters.
In contrast, the IS and Flow models demonstrated similarly
robust performance, outperforming other models in fewer
numerical parameters, namely 11 out of 25.

Overall, Table 3 displays a trend where all categori-
cal parameters are more accurately estimated by the IS2
model. In terms of numerical parameters, the IS2 model
performs better in predicting parameters with greater per-
ceptual significance, such as LFO. However, parameters of
lesser perceptual significance, such as the envelope level
of pitch (PITCHEGLEVEL), exhibit lower estimation ac-
curacy. These trends are consistent with the findings pre-
sented earlier in Table 2

The trends observed in Table 3 repeat themselves in the
TAL dataset (Table 4) and the FM Synth dataset (Table 5),
with slightly improved accuracy for the alternative models.
Nevertheless, the IS2 model maintains the highest mean
accuracy. IS2 does not achieve the highest accuracy in cer-
tain parameters, such as filter cutoff, which are of lesser
significance for perceived quality. For example, if the filter
cutoff is estimated for class A instead of the correct class
B, and A and B are neighboring classes, the impact on
perception might be insignificant. Another set of param-
eters that demonstrate negligible differences in accuracy
between models is Oscillator 2, LFO1 amount, and LFO2
values. In contrast, parameters such as LFO1 waveform
and rate play a crucial role in controlling Oscillator 2 mod-
ulation and impacting the low frequencies of the sound,
making them significant in terms of perception. Here, IS2
achieves significantly higher accuracies compared to other
models. These findings are consistent with the low losses

of the IS2 model for low frequencies, as presented in Ta-
ble 2.

In Table 5, Oscillator 1 waveform, LFO1, and filter
cutoff frequency exhibit negligible differences in accuracy
in favor of the alternative baselines. Higher differences
are observed in AM modulation parameters. Neverthe-
less, these parameters primarily affect the Tremolo effect,
which has a relatively no impact at all on the frequency
composition, and for small changes, leading to less influ-
ence on human perception and less impact on the metrics
presented in Table 1. Compared to the Flow model, the
parameters with the most significant differences are Oscil-
lator 1 frequency and modulation index, which have a sig-
nificant impact on perception by affecting the carrier fre-
quency of the signal.

Overall, the results in Tables 1-5 indicate that by lever-
aging information on the difference between the original
and reproduced signal during training and inference (ITF),
IS2 promotes accurate predictions for parameters that have
the most significant impact on human perception, espe-
cially FM modulator parameters which very challenging to
estimate. Consequently, IS2 produces reconstructions that
more closely resemble the original signal, which is the ul-
timate goal of sound matching. In what follows, we further
substantiate our findings via human subjective evaluation.

3.5 MOS Test and Qualitative Results

Table 6 presents MOS test results conducted using N = 20
individuals. Participants were asked to rate the reconstruc-
tion score of 80 random audio samples on a [1 − 5] scale.
The results are inline with those of Table 1, showing that
the IS2 model outperforms the other models. Furthermore,
the MOS test results indicate that the IS2 model has the
highest perception quality of all the models evaluated. The
samples from this test are available for listening on the
GitHub repository.

Finally, in the supplementary materials, we provide ex-
tensive qualitative comparison between the ground-truth
spectrograms and the reconstructions produced by each of
the evaluated methods. Additionally, the audio signals for
these examples are provided are available in our Google
Drive folder 3 .

4. CONCLUSION

We presented IS2 - a novel model for automatic synthe-
sizer sound matching. IS2 introduces two novel contribu-
tions: (1) a differentiable synthesizer-proxy decoder that
enables gradient-based optimization of the reproduced au-
dio signals, and (2) the ITF technique that enables im-
proved model predictions at inference time. These contri-
butions lead to state-of-the-art results compared to existing
methods across multiple datasets and metrics.
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