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ABSTRACT

Alignment algorithms like DTW and subsequence DTW

assume specific boundary conditions on where an align-

ment path can begin and end in the cost matrix. In prac-

tice, the boundary conditions may not be known a priori

or may not satisfy such strict assumptions. This paper in-

troduces an alignment algorithm called FlexDTW that is

designed to handle a wide range of boundary conditions.

FlexDTW allows alignment paths to start anywhere on the

bottom or left edge of the cost matrix (adjacent to the ori-

gin) and to end anywhere on the top or right edge. In or-

der to properly compare paths of very different lengths,

we use a normalized path cost measure that normalizes the

cumulative path cost by the path length. The key insight

of FlexDTW is that the Manhattan length of a path can

be computed by simply knowing the starting point of the

path, which can be computed recursively during dynamic

programming. We artificially generate a suite of 16 bench-

marks based on the Chopin Mazurka dataset in order to

characterize audio alignment performance under a variety

of boundary conditions. We show that FlexDTW has con-

sistently strong performance that is comparable or better

than commonly used alignment algorithms, and it is the

only system with strong performance in some boundary

conditions.

1. INTRODUCTION

Dynamic Time Warping (DTW) is a dynamic program-

ming algorithm for computing the optimal alignment be-

tween two sequences under certain assumptions. In the

MIR literature, it is the most widely used method for align-

ing two audio recordings of the same piece of music. One

of its assumptions is the boundary condition of the align-

ment path: it assumes that the alignment path begins at the

origin of the pairwise cost matrix and ends in the opposite

corner of the cost matrix. When working with real data

like (say) Youtube recordings of a piece of classical mu-

sic, the boundary conditions are usually unknown a priori

and may not satisfy the restrictive assumptions of standard
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DTW. This may be due to silence or applause at the begin-

ning or end of videos, or perhaps due to some videos con-

taining only one movement of a piece. This paper seeks to

develop a more flexible variant of DTW that can handle a

wider range of boundary conditions.

Previous work. There is a very large body of work

on variations or extensions of DTW. These works gener-

ally fall into one of two categories. The first category fo-

cuses on mitigating the quadratic computation and mem-

ory costs of DTW. Some works approach this by speed-

ing up an exact DTW computation through the use of

lower bounds [1, 2], early abandoning [3, 4], using mul-

tiple cores [5, 6], or specialized hardware [7, 8]. Tralie

and Dempsey [9] introduce a method for computing ex-

act DTW with linear memory by processing diagonals

rather than rows/columns. Other works propose approx-

imations to DTW that require less computation, runtime,

or memory. Some approaches include approximate lower

bounds [10,11], approximations of DTW distance [12,13],

imposing bands in the cost matrix to limit extreme time

warping [14,15], computing alignments at multiple resolu-

tions [16,17], parallelizable approximations of DTW [18],

or working with a fixed amount of memory [19]. The sec-

ond category focuses on extending the behavior of DTW

in some way. Some examples in the MIR literature include

handling structural differences like repeats and jumps in

music [20–22], performing alignment in an online setting

[23–25], handling partial alignments [26, 27], using multi-

ple performances to improve alignment accuracy [28], ac-

counting for pitch drift in a capella music [29], and align-

ing sets of source recordings and mixtures [30].

Shortcomings. Our work aims to make DTW more flex-

ible by focusing on an often overlooked aspect: bound-

ary conditions. The vast majority of previous works on

DTW or its variants focus on handling one specific type of

boundary condition. For example, DTW (and any of its ap-

proximations or efficient implementations) assumes that an

alignment path begins at the origin of the cost matrix and

ends in the opposite corner. Similarly, subsequence DTW

assumes that an alignment path begins somewhere on the

longer edge of the cost matrix and ends on the opposite

edge. As mentioned above, in many situations the bound-

ary conditions are unknown a priori or may be incompati-

ble with the assumptions of standard alignment methods.

Our approach. FlexDTW is designed to be flexible in

handling a wide range of boundary conditions. Assuming

that the origin of the cost matrix is in the lower left corner,
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Figure 1. Different boundary conditions for the align-

ment path between two sequences. The full match and

subsequence conditions are well handled by standard al-

gorithms, but the other conditions are not.

FlexDTW allows an alignment path to begin anywhere on

the left or bottom edge, and it allows the alignment path to

end anywhere on the top or right edge. Figure 1 shows

several examples of boundary conditions that FlexDTW

can handle. To properly compare alignment paths of very

different length, it is necessary to use a normalized path

cost measure that normalizes the cumulative path cost by

the path length. While it is possible to determine the op-

timal alignment path ending at any position by following

the backpointers in the backtrace matrix, this would result

in an impractically high computation overhead. The key

insight with FlexDTW is that the Manhattan length of an

alignment path can be computed by simply knowing the

starting and ending location of the alignment path (without

knowing the actual path itself). The starting location infor-

mation can be computed in a recursive manner and stored

during the dynamic programming stage, making it possible

to compute normalized path costs in an efficient manner.

Contributions. This paper has three main contribu-

tions. First, we introduce an alignment algorithm called

FlexDTW that handles a wide range of boundary condi-

tions. FlexDTW allows an alignment path to start any-

where on the two edges of the cost matrix adjacent to the

origin (e.g. bottom and left edge), and it allows alignment

paths to end anywhere on the other two edges (top and right

edge). Second, we design a suite of 16 benchmarks based

on the Chopin Mazurka dataset [31] in order to character-

ize audio alignment performance under a variety of spe-

cific boundary conditions. Third, we present experimental

results showing that FlexDTW has consistently strong per-

formance across all 16 benchmarks that is comparable to or

better than the best-performing system from a set of widely

used audio alignment algorithms. We provide source code

for our implementation of FlexDTW, along with code for

running all experiments in this paper. 1

2. SYSTEM DESIGN

In this section we describe the FlexDTW algorithm in de-

tail. To make it clear how FlexDTW relates to previous

1 Code can be found at https://github.com/anonymized/.

work, we begin with a brief overview of DTW and subse-

quence DTW.

2.1 DTW and Subsequence DTW

Standard DTW estimates the alignment between two fea-

ture sequences x0, x1, . . . , xN−1 and y0, y1, . . . , yM−1.

It accomplishes this by using dynamic programming to

find the optimal path through a pairwise cost matrix C ∈
R

N×M under a set of allowable transitions. DTW assumes

that the alignment path begins at (0,0) and ends at (N − 1,

M − 1) in the cost matrix. Subsequence DTW is a variant

of DTW that finds the optimal alignment between a query

sequence x0, x1, . . . , xN−1 and any subsequence within a

(typically longer) reference sequence y0, y1, . . . , yM−1.

Subsequence DTW assumes that the alignment path in-

cludes the entire query sequence but can begin and end

anywhere in the reference sequence.

2.2 FlexDTW: Algorithm

FlexDTW is a variant of DTW that seeks to handle a much

wider range of boundary conditions. It is designed to

handle the boundary conditions of standard DTW, subse-

quence DTW, as well as many other conditions that are not

handled by DTW or subsequence DTW. We first give an

overview of the boundary conditions that FlexDTW is de-

signed to handle, describe the main challenge in allowing

flexible boundary conditions, introduce a key insight, and

then explain the algorithm in detail.

Boundary conditions. Figure 1 shows an overview of

the boundary conditions that FlexDTW is designed to han-

dle. In the given figure, the alignment path may begin any-

where along the left edge or bottom edge of the cost ma-

trix, and the alignment path can end anywhere along the

top edge or right edge. 2 Note that the resulting set of al-

lowable alignment paths is a superset that contains all al-

lowable DTW paths and all allowable subsequence DTW

paths, in addition to many other types of alignment paths.

Challenge. The main challenge in allowing such flex-

ible boundary conditions is normalization. Because the

set of allowable paths has such an enormous variation in

path length, one must use a normalized path cost to fairly

compare one alignment path with another. (Otherwise, the

path with minimum cumulative path cost will simply be the

alignment path with fewest elements.) This means that our

metric for comparing different alignment paths must nor-

malize the cumulative path cost by some measure of align-

ment path length. To determine the length of an alignment

path ending at position (i,j), we could simply follow the

backpointers in the backtrace matrix, but this introduces

an impractically high computational overhead to the algo-

rithm.

Key insight. The key insight with FlexDTW is that the

Manhattan length of an alignment path does not require

knowing what the actual alignment path is. Assuming that

the alignment path is monotonically non-decreasing (as is

the case with DTW), computing the Manhattan length of

2 We exclude a buffer region near the top left and bottom right corners
to avoid short, degenerate paths, as will be explained later.
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an alignment path only requires knowing the starting point

and ending point of the path. The starting location of any

optimal alignment path can be computed recursively with

minimal computational overhead and simply stored as an

additional piece of information (similar to the backtrace

information). Having the starting location of all optimal

alignment paths allows us to efficiently calculate normal-

ized path costs without having to perform any backtrack-

ing. We can then compare the goodness of alignment paths

by comparing their path cost per Manhattan block.

Algorithm. We now describe the FlexDTW algorithm

for aligning two feature sequences x0, x1,. . . , xN−1 and

y0, y1, . . . , yM−1. Similar to DTW, one must specify a

set of allowable transitions and corresponding transition

weights. In addition, there is one hyperparameter buffer

that specifies a minimum allowable path length, which

helps to avoid short, degenerate alignment paths. The al-

gorithm consists of five steps, which are described below.

The first step is to compute a pairwise cost matrix C ∈
R

N×M , where each element C[i, j] indicates the distance

between xi and yj under some distance metric.

The second step is to initialize three matrices: a cu-

mulative cost matrix D ∈ R
N×M , a backtrace matrix

B ∈ Z
N×M , and a starting point matrix S ∈ Z

N×M . In

order to allow alignment paths to begin anywhere in either

sequence without penalty, we initialize D[0, j] = C[0, j],
j = 0, 1,. . . , M − 1 and D[i, 0] = C[i, 0], i = 0, 1,. . . ,

N − 1. We also initialize S for all valid starting points for

alignment paths. Since the starting locations are all of the

form (0, j) or (i, 0), we can efficiently encode the starting

locations as a single integer, where positive integers indi-

cate a starting location (0, j) and negative integers indicate

a starting location (i, 0). This reduces the memory over-

head of matrix S. Accordingly, we initialize S[0, j] = j,

j = 0, 1,. . . , M − 1 and S[i, 0] = −i, i = 0, 1,. . . , N − 1.

The third step is to compute the elements in D, B, and S

using dynamic programming. For a given set of allowable

transitions {t1, t2, t3} (assumed to be {(1, 1), (1, 2), (2, 1)

} in the equation below) and corresponding multiplicative

weights w1, w2, w3, the optimal transition B[i, j] can be

computed with the following recursive formula:

B[i, j] = argmin
k=1,2,3































D[i−1,j−1]+w1·C[i,j]
i+j−|S[i−1,j−1]| if k = 1

D[i−1,j−2]+w2·C[i,j]
i+j−|S[i−1,j−2]| if k = 2

D[i−2,j−1]+w3·C[i,j]
i+j−|S[i−2,j−1]| if k = 3

(1)

The numerator elements in the equation above are cumula-

tive path costs, and the denominator elements are the Man-

hattan lengths of each candidate path. Once the best tran-

sition has been determined, the value of D[i, j] can be up-

dated as:

D[i, j] =











D[i− 1, j − 1] + w1 · C[i, j] if B[i, j] = 1

D[i− 1, j − 2] + w2 · C[i, j] if B[i, j] = 2

D[i− 2, j − 1] + w3 · C[i, j] if B[i, j] = 3

(2)

Similarly, the value of S[i, j] can be updated as:

S[i, j] =











S[i− 1, j − 1] if B[i, j] = 1

S[i− 1, j − 2] if B[i, j] = 2

S[i− 2, j − 1] if B[i, j] = 3

(3)

Note that the elements in D still indicate unnormalized

path costs (as in DTW), but the decision of which tran-

sition is the best is made based on the normalized path cost

(i.e. path cost per Manhattan block).

The fourth step is to identify the endpoint of the optimal

alignment path. The candidate set of valid ending points is

given by Ecand = {(N − 1, j) | j = buffer, . . . ,M −
1} ∪ {(i,M−1) | i = buffer, . . . , N−1}, which corre-

sponds to any location in the top or right edge in Figure 1.

We exclude a user-specified buffer region from the top left

and bottom right corners, which ensures that the alignment

path is of a certain minimum length. This buffer region

helps to prevent the algorithm from selecting short, de-

generate alignments paths with low normalized path cost.

Given this set of candidate locations, we select the end-

point Ebest to be

Ebest = argmin
(i,j)∈Ecand

D[i, j]

i+ j − |S[i, j]|
(4)

where the objective function is the path cost per Manhattan

block.

The fifth step is to backtrace from the selected endpoint

using the backpointers in B until we reach an element (0,

j), j = 0, 1,. . . , M −1 (on the bottom edge in Figure 1) or

(i, 0), i = 0, 1,. . . , N − 1 (on the left edge). The resulting

alignment path is the final estimated alignment.

2.3 FlexDTW: Hyperparameters

In this subsection we discuss the hyperparameters in

FlexDTW and our method for setting them. As mentioned

previously, FlexDTW has three kinds of user-defined pa-

rameters: a set of allowable transitions, a corresponding

set of transition weights, and a buffer hyperparameter that

specifies a minimum path length for allowable alignment

paths. Note that DTW also requires specifying a set of

transitions and transition weights, so FlexDTW has one ad-

ditional hyperparameter compared to DTW.

Transitions & weights. A typical set of transitions for

audio alignment tasks is {(1, 1), (1, 2), (2, 1)}, which im-

poses a maximum warping factor of 2. This set is usually

preferred to sets that include (0, 1) and (1, 0) transitions,

since these transitions can lead to degenerate alignments.

We will use this set of allowable transitions throughout this

paper, unless otherwise noted. The associated transition

weights can be set in many different ways. In FlexDTW,

there is one particular setting of transition weights that is

of theoretical interest: w1 = 2, w2 = 3, w3 = 3. This

setting weights each transition according to its Manhattan

distance. Note that in standard DTW (where the alignment

path is assumed to start at (0, 0) and end at (N−1, M−1)),

every allowable alignment path has the same Manhattan
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Piece Files mean std min max

Opus 17, No 4 64 259.7 32.5 194.4 409.6

Opus 24, No 2 64 137.5 13.9 109.6 180.0

Opus 30, No 2 34 85.0 9.2 68.0 99.0

Opus 63, No 3 88 129.0 13.4 96.2 162.9

Opus 68, No 3 51 101.1 19.4 71.8 164.8

Table 1. Overview of the original Chopin Mazurka dataset.

This is used as the source data to generate the benchmark

suite. All durations are in seconds.

distance, so this setting effectively treats every path as be-

ing equally likely. It is analogous to a maximum likelihood

formulation in which all possibilities are treated as equally

likely a priori, and selection is made entirely based on the

observations. For this reason, we recommend setting the

transition weights in FlexDTW as w1 = W , w2 = 3,

w3 = 3, where W can be tuned on a validation dataset.

W = 2 corresponds to a maximum likelihood formula-

tion, and smaller values of W correspond to a bias to-

wards diagonal alignment paths. In our experiments, we

use W = 1.25, which provided optimal performance on

the training set.

Buffer. The purpose of the buffer is to prevent the al-

gorithm from selecting short, degenerate alignment paths

that may have low normalized path cost. For example, si-

lence at the end of one sequence may match silence at the

beginning of the other sequence, resulting in a very short

alignment path with low normalized path cost. The buffer

should be interpreted as the minimum length along one se-

quence that an alignment path must match in order to be

considered a valid path. This could simply be set manually

based on knowledge of the task or data. In our case, how-

ever, our suite of benchmarks spans such a wide range of

sequence lengths and alignment path lengths that a single

setting is not ideal. Therefore, we determined the buffer

hyperparameter in a data-dependent way for every individ-

ual query based on two considerations. First, when one se-

quence is much longer than the other sequence, the desired

behavior is probably a subsequence alignment. In this case,

we want the entire shorter (query) sequence to be matched.

Second, when the two sequences are approximately the

same length, much more flexibility can be afforded and

an intuitive parameter is to define the minimum percent-

age of either sequence that must be matched. Putting

these two considerations together, we recommend setting

the buffer hyperparameter in the following way: for align-

ing two sequences of length L1 and L2, set buffer =

min(L1, L2) · (1 − (1 − β) ∗ min(L1,L2)
max(L1,L2)

). This sets the

buffer to a fraction of the shorter sequence length, where

the fraction is close to 1 when L1 and L2 are very differ-

ent (i.e. the subsequence case) and close to β when L1 and

L2 are approximately the same. β can thus be interpreted

as the minimum fraction of either sequence that must be

matched when both sequences are equal in length. We

tuned β on the training set and found β = 0.1 to work

well.

3. EXPERIMENTAL SETUP

In this section we describe the suite of 16 benchmarks that

we use to characterize the performance of alignment algo-

rithms under a variety of boundary conditions.

Original data. The raw source material for our bench-

marks comes from the Chopin Mazurka dataset [31]. This

dataset consists of numerous historic recordings of five

different Chopin Mazurkas, along with beat-level annota-

tions of each recording. All of the recordings for two of

the Mazurkas (Opus 17 No. 4 and Opus 63 No. 3) were

set apart for training and development, and the recordings

from the other three Mazurkas were set apart for testing.

Table 1 provides an overview of the dataset.

Evaluation. To evaluate alignment performance, we

consider every pair of recordings of the same Mazurka.

This results in
(

64
2

)

+
(

88
2

)

= 5844 training pairs and
(

64
2

)

+
(

34
2

)

+
(

51
2

)

= 3852 testing pairs. For each pair

of recordings A and B, we compare the estimated align-

ment path against the ground truth beat timestamps in the

following manner. At each ground truth beat timestamp in

recording A, we compute the alignment error between the

estimated corresponding timestamp in recording B (based

on the predicted alignment path) and the ground truth cor-

responding timestamp in recording B (based on the beat

annotations). We report aggregate alignment performance

as an error rate indicating the percentage of alignments that

have an alignment error greater than a fixed error tolerance.

Modifications: Overview. We generated synthetically

modified versions of the Mazurka dataset in order to sim-

ulate a variety of boundary conditions. Each modified ver-

sion of the Mazurka dataset contains the exact same num-

ber of recordings, but each recording has been modified to

study a particular boundary condition. Thus, the number of

training pairs and testing pairs is the same as in the original

benchmark, but the audio data and corresponding annota-

tions have been modified appropriately. Each benchmark

is evaluated as described above. Below, we describe how

we constructed each of the 16 benchmarks.

Full Match. The full match benchmark is the Mazurka

dataset in its original unmodified form. This boundary con-

dition assumes that both recordings start and end at the be-

ginning and end of the piece. In Figure 1, this corresponds

to an alignment path that starts in the lower left corner and

ends in the upper right corner.

Subsequence. The subsequence benchmark assumes

that one recording matches a subsequence in the other

recording. For every pair of recordings A and B, a ran-

domly sampled L-second interval within recording A is

selected and aligned against the entirety of recording B.

We construct three separate subsequence benchmarks with

L = 20, 30, 40.

Partial Start. The partial start benchmark assumes that

both recordings start together but that one recording ends

early (e.g. only contains one movement). For every pair

of recordings A and B, we randomly sample a number in

the interval [0.55, 0.75], select that percentage of recording

A (starting from the beginning), and align the fragment of

recording A against the entirety of recording B.
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Partial End. The partial end benchmark assumes that

both recordings end together but that one recording starts

part way through the piece. For every pair of recordings

A and B, we randomly sample a number in the interval

[0.55, 0.75], select that percentage of recording A at the

end (i.e. starting in the middle of the recording and extend-

ing until the end), and then align the fragment of recording

A against the entirety of recording B.

Partial Overlap. The partial overlap benchmark as-

sumes that both recordings have some temporal overlap,

but that one recording contains extra content before the re-

gion of overlap and the other recording contains extra con-

tent after the region of overlap. For every pair of recordings

A and B, we (a) randomly sample a number in [0.55, 0.75]
and select that percentage of recording A starting from

the beginning, (b) randomly sample a different number in

[0.55, 0.75] and select that percentage of recording B at

the end, and then (c) align the fragment of A against the

fragment of B.

Pre. The pre benchmark assumes that both recordings

contain the entire piece but that one recording has a period

of silence at the beginning. For every pair of recordings

A and B, we prepend L seconds of silence to recording A

and align it to the entirety of recording B. We construct

three separate pre benchmarks with L = 5, 10, 20.

Post. The post benchmark assumes that both recordings

contain the entire piece but that one recording has a period

of silence after the piece ends. For every pair of recordings

A and B, we append L seconds of silence to recording A

and align it against the entirety of recording B. We con-

struct three separate post benchmarks with L = 5, 10, 20.

Pre-Post. The pre-post benchmark assumes that both

recordings contain the entire piece, but that one record-

ing contains extra silence at the beginning and the other

recording contains extra silence at the end. For every pair

of recordings A and B, we prepend L seconds of silence to

recording A, append L seconds to recording B, and then

align the two recordings. We construct three separate pre-

post benchmarks with L = 5, 10, 20.

4. RESULTS

We report experimental results with FlexDTW and several

standard alignment algorithms:

• DTW1: Standard DTW with transitions of (1, 1), (1,

2), (2, 1) and corresponding weights 2, 3, 3.

• DTW2: Standard DTW with transitions of (1, 1), (1,

2), (2, 1) and corresponding weights 1, 1, 1.

• DTW3: Standard DTW with transitions of (1, 1), (1,

2), (2, 1) and corresponding weights 1, 2, 2.

• SubseqDTW1: Subsequence DTW with (query, ref-

erence) transitions of (1, 1), (1, 2), (2, 1) and corre-

sponding weights 1, 1, 2.

• SubseqDTW2: Subsequence DTW with (query, ref-

erence) transitions of (1, 1), (1, 2), (2, 1) and corre-

sponding weights 2, 3, 3.

• SubseqDTW3: Subsequence DTW with (query, ref-

erence) transitions of (1, 1), (1, 2), (2, 1) and corre-

sponding weights 1, 2, 2.

• NWTW: A variant of DTW proposed in [21] that

allows skip transitions (0, 1) and (1, 0), in addition

to the usual (1, 1), (1, 2), (2, 1) transitions. The skip

transitions incur a fixed penalty cost γ, which is a

hyperparameter that we tuned on the training data.

We assessed the performance of a larger set of DTW ver-

sions (with different sets of allowable transitions and cor-

responding transition weights), but we only include the 3

versions with best performance to avoid overcluttering Fig-

ure 2. Of particular note, we did experiment with DTW

versions that had (0, 1) and (1, 0) transitions, but always

found those versions to perform much worse. Likewise, we

considered other versions of subsequence DTW but only

include the top 3 versions in Figure 2. The subsequence

DTW systems are unique in that they are not symmetric.

For these systems, we always assume that the alignment is

trying to match the shorter recording against a subsequence

in the longer recording. Note that all of the systems above

can be used with any feature representation and distance

metric. For simplicity, we use standard chroma features

(as computed with default parameters in librosa) and a co-

sine distance metric for all systems.

Figure 2 compares the performance of FlexDTW and

the above algorithms on our benchmark suite. For each

system, we fixed the hyperparameter settings and evalu-

ated its performance across all 16 benchmarks. Each panel

in Figure 2 corresponds to one of the 16 benchmarks, and

the different colored bars show the error rate at 200ms tol-

erance for different systems. On top of each colored bar,

we have also overlaid two black horizontal bars indicating

the error rate at 100ms tolerance (above) and at 500ms tol-

erance (below).

There are two things to notice about the results in Figure

2. First, the seven baseline systems only handle a subset

of boundary conditions. In other words, each of the base-

line systems performs well on certain benchmarks and very

poorly on other benchmarks. For example, the DTW sys-

tems perform well on the fully matching benchmark (for

which they are designed), but they perform terribly on the

subsequence benchmarks and perform worse and worse as

more silence is prepended or appended to either record-

ing. Likewise, the subsequence DTW systems perform

well on the subsequence benchmarks, but they fail on the

partial overlap benchmark and have only moderate perfor-

mance on the pre, post, and pre-post benchmarks. NWTW

has strong performance across most benchmarks but fails

completely on the subsequence and partial overlap bench-

marks. All of the baseline systems completely fail on the

partial overlap benchmark, since none are designed to han-

dle that boundary condition. Second, FlexDTW has con-

sistently strong performance across all 16 benchmarks. On

all benchmarks, it has a performance that is comparable

to or better than the best-performing baseline system. On

the partial overlap benchmark, it is the only system that

has strong performance, with an error rate that is compa-

rable to its performance on the other benchmarks. These

results demonstrate its flexibility in handling a wide range

of boundary conditions.
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Figure 2. Performance of alignment algorithms on the 16 boundary conditions in our benchmark suite. Colored bars

indicate error rate at 200ms error tolerance, and the horizontal bars indicate error rates at 100ms (above) and 500ms

(below). Error rates greater than 50% are not shown.

System 1k 2k 5k 10k 20k 50k

DTW .033 0.14 0.87 3.5 13.8 87.3

SubseqDTW 0.04 0.15 0.96 3.82 15.3 96.8

NWTW .037 0.16 0.97 3.93 15.8 101.1

FlexDTW .038 0.16 1.05 4.21 16.9 111.1

Table 2. Average runtime to process a cost matrix of size

N×N . Columns indicate different sizes N , and rows indi-

cate different systems. Each reported number is an average

over 10 trials, and times are expressed in seconds.

5. ANALYSIS

In this section we conduct several analyses to provide

deeper insight into FlexDTW.

Table 2 compares the runtime of FlexDTW and the

baseline alignment systems. We measured how long each

alignment algorithm took to process a cost matrix of size

N × N , where N ranges from 1k to 50k. Each number

in the table is an average over 10 trials. FlexDTW and

NWTW were implemented in python with numba accel-

eration, and we used the librosa implementation for DTW

and subsequence DTW (also using numba acceleration).

All experiments were run on an Intel Xeon 2.40 GHz CPU.

For longer sequence lengths, we can see that FlexDTW

incurs a 20-25% runtime overhead compared DTW and a

10-15% runtime overhead compared to subsequence DTW.

This overhead comes primarily from needing to perform a

floating-point division to evaluate every candidate path.

Another drawback of FlexDTW is the additional mem-

ory overhead of storing S. We can estimate the memory

overhead in the following manner. DTW requires allocat-

ing three matrices: the pairwise cost matrix C ∈ R
N×M ,

the cumulative cost matrix D ∈ R
N×M , and the back-

trace matrix B ∈ Z
N×M . Assuming that C and D are

matrices of 64-bit floating point numbers and B is a ma-

trix of 8-bit unsigned integers, the total memory cost is

8NM + 8NM + 1NM = 17NM bytes. FlexDTW

requires allocating an additional matrix S for storing the

starting point locations. If the two sequence lengths are

less than 215 = 32768, then S can be stored as a matrix of

16-bit integers, resulting in an extra memory overhead of

2NM . If either sequence length is greater than 32768, then

S must be stored as a matrix of 64-bit integers, resulting

in an extra memory overhead of 4NM . In summary, the

memory overhead is 2NM
17NM

≈ 12% for sequence lengths

less than 32768 and 4NM
17NM

≈ 24% for longer sequences.

We also investigated and identified two main failure

modes of FlexDTW. The first failure mode occurs when

there is extreme time warping between the two recordings.

Because the (1, 1) transition is penalized proportionally

less than the (2, 1) or (1, 2) transitions, the algorithm will

sometimes take a “shortcut" of (1, 1) transitions to/from

an edge of the cost matrix at the beginning or end of the

alignment path. The second failure mode occurs when al-

ternate matching paths are selected. For example, in the

Mazurka Opus 17 No. 4, the first four measures and the last

four measures match, which creates an additional match-

ing alignment path under the flexible boundary conditions

of FlexDTW.

6. CONCLUSION

We have introduced a time warping algorithm called

FlexDTW that is designed to handle a wide range of

boundary conditions. We artificially generate a suite of 16

benchmarks based on the Chopin Mazurka dataset, which

characterizes alignment performance in a variety of bound-

ary conditions. In all 16 boundary conditions, FlexDTW

has strong performance that is as good or better than a set

of widely used alignment algorithms. Compared to the

librosa implementation of DTW and subsequence DTW,

FlexDTW incurs a runtime overhead of 10-25% and a

memory overhead of 12% for sequences less than length

215 and 24% for longer sequences.
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