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ABSTRACT

Music Structure Analysis (MSA) is the task aiming at

identifying musical segments that compose a music track

and possibly label them based on their similarity. In this

paper we propose a supervised approach for the task of

music boundary detection. In our approach we simulta-

neously learn features and convolution kernels. For this

we jointly optimize - a loss based on the Self-Similarity-

Matrix (SSM) obtained with the learned features, denoted

by SSM-loss, and - a loss based on the novelty score ob-

tained applying the learned kernels to the estimated SSM,

denoted by novelty-loss. We also demonstrate that relative

feature learning, through self-attention, is beneficial for the

task of MSA. Finally, we compare the performances of our

approach to previously proposed approaches on the stan-

dard RWC-Pop, and various subsets of SALAMI.

1 Introduction

Music Structure Analysis (MSA) is the task aiming at

identifying musical segments that compose a music track

(a.k.a. segment boundary estimation) and possibly label

them based on their similarity (a.k.a. segment labeling).

We deal here with MSA from audio. MSA is one of the

oldest task in Music Information Retrieval 1 but still one

of the most challenging. This is due to the difficulty to

exactly define what music structure is and hence be able

to create annotated datasets to measure progress or train

systems. People agree that the structure can be considered

from multiple viewpoints 2 [2] [3], is hierarchical [4] and

is partly subjective [5]. Probably because of this complex-

ity, the number of contributions in MSA has remained low

despite its large number of applications: audio summariza-

tion [6], interactive browsing [7–9], musical analysis [10],

tools for researcher (to help chord recognition [11], source

separation [12] or downbeat estimation [13]).

To solve the two MSA tasks (boundary detection and

segment labeling), three assumptions [14] are commonly

used: (1) novelty (we assume that segments are defined

1 Foote’s paper [1] on SSM was published in 1999.
2 musical role, acoustic similarity, instrument role, perceptual tests
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by large —novel— changes of the musical content over

time), (2) homogeneity (the musical content is homoge-

neous within a given segment) and (3) repetition (the musi-

cal content —homogeneous or not— can be repeated over

time). This has been extended by [15] to a fourth regu-

larity assumption (the segment’s durations are regular over

time). Combining those allows to construct MSA systems.

1.1 Related works

Over time, a large palette of approaches has been proposed

for MSA. We only review the ones related to our work and

refer the reader to Nieto et al. [16] for a good overview. We

consider three periods according to the nature of the audio

features –hand-crafted (HC) or learned by deep learning

(DL) –, and the nature of the detection system which uses

the audio features – HC or trained by DL –.

First period: HC detection system applied to HC au-

dio features. In these systems HC audio features (such

as MFCC or Chroma) were given as input to HC detec-

tion system (such as the checkerboard kernel, novelty-

score [17]), unsupervised training (such as HMM [6],

NMF [18]), supervised (such as OLDA [19]) or pattern

matching algorithms (such as DTW [20] or variants [21]) .

Second period: DL detection system applied to HC

audio features. Over time, more and larger annotated

datasets for MSA have been developed; which concomi-

tantly with the development of DL has allowed to re-

formulate the MSA task in terms of supervised learning.

The detection system developed here mainly target the task

of boundary detection. For example, [22] [23] [24] pro-

pose to train in a supervised way a Convolutional Net-

works (ConvNet) ŷ = fθ(X) to estimate if the center

of a patch of HC audio features X is a boundary (y=1).

Various HC audio features (or combinations of) are used

here: Log-Mel-Spectrogram, Pich-Class-Profile through

SSM expressed in (time,time) or (time,lag).

Third period: HC detection system applied to DL

audio features. To deal with the endless debate about the

choice of HC audio features, McCallum et al. [25] pro-

pose to learn them. For this, they train an encoder fθ

by minimizing a Triplet Loss (TL) [26] between patches

of beat-synchronous Constant-Q-Transform (CQT). For

the TL, they propose a Self-Supervised-Learning (SSL)

paradigm 3 to define the anchor A patch, positive P patch

and negative N patch. Using the homogeneity assumption,

neighboring times are supposed to be more similar to each

3 which does not require any annotated segments and labels
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other (therefore used to define A and P ) than to distant

ones (used to define N ). For training they use a very large

unlabeled dataset of 28345 songs. This method however

does not consider the repetition assumption 4 .

Wang et al. [27] revised McCallum approach in a su-

pervised setting. In this, the patches P (resp. N ) are now

explicitly chosen so as to have the same (resp. different)

annotated segment label than the patches A. This super-

vised method now consider both the homogeneity and rep-

etition assumption. In another work [28], they propose

a spectral-temporal Transformer-based model (SpecTNT)

trained with a connectionist temporal localization (CTL)

loss to jointly estimate music segments ad their labels.

McCallum approach has also been extended by Buisson

et al. [29] to take benefit from the hierarchy of structure in

music. They show that the obtained deep embeddings can

improve segmentation at various levels of granularity.

Rather than learning features for MSA, Salamon et

al. [30] proposed to re-use pretrained ones. Those are ob-

tained using encoders previously trained on different tasks

(Few-Shot Learning sound event and music auto-tagging).

Those are then used as input to a Laplacian Structural De-

compositon algorithm for MSA.

1.2 Proposal and paper organization

Following the previous taxonomy, our proposal would be-

long to the category “DL detection system applied to DL

audio features” . Unlike previous feature learning ap-

proaches (that rely on a Triplet Loss paradigm), we utilize

a more straightforward paradigm (illustrated in Figure 1)

which is a succession of two steps, each with its own ob-

jective. The two objectives are jointly optimized.

In the first step, we learn the parameters θ of an en-

coder fθ such that when applied to the sequence of inputs

{Xi}i∈{1...T} that represent a given track (where T is the

length of temporal sequence), the encoded features allows

the estimation of a SSM, Ŝθ
ij , which attempts to reproduce

a ground-truth SSM, Sij . For training fθ we use an ap-

proach similar to the SSM-Net approach proposed in [31],

i.e. defining a loss which directly compare the obtained

SSM Ŝ
θ
ij to a ground-truth SSM Sij .

In the second step, we learn a set of kernels K
θ such

that when convolved over the main diagonal of the esti-

mated SSM Ŝ
θ
ij it allows the estimation of a novelty score

n̂
θ
i , which attempts to reproduce a ground-truth novelty

score, ni. This novelty score is usually obtained using a

fixed checkerboard kernel [32]. The resulting function is

named novelty score since high values in it indicate times

where the content change (it is homogeneous before and

after). It has been shown that better kernels can be used

(for example using multi-scale kernels [33]) and that it is

possible to train such kernels Kθ considered as the kernels

of a ConvNet (for example [22] and [23] in the case of a

(time,lag) SSM or [24] in the case of a (time,time) SSM,

which is our case). This is the approach we follow here.

4 N could potentially be in a segment which is a repetition of the seg-
ment containing A

Another proposal we make in this paper, is to consider

the learning of relative features, i.e. features which are

relative to the given track.

Paper organization. We provide an overview of

our system in part 2, describe the inputs to our system

(part 2.1), detail the two losses (parts 2.2 and 2.3), moti-

vate relative feature learning (part 2.4), detail the architec-

ture of our encoder fθ (part 2.5) and the training process

(part 2.6). In part 3, we provide a large-scale evaluation

of our proposal. It should be noted that although we only

evaluate our method for the task of segment boundary de-

tection, it can also be used for segment labeling given the

clearness of the obtained SSM.

2 Proposal

2.1 Input data {Xi}

The inputs {Xi} to our system are simple patches 5

of Log-Mel-Spectrogram. We didn’t consider beat-

synchronous features as in [25] given the non-reliability

of beat estimation outside popular music. Using

librosa [34], we first computed Mel-spectrogram with

80 mel-bands, using a 92ms window length and 23ms hop

size. Those are then converted to log-amplitude using

log(1+100 · mel). We then aggregate them (mean op-

erator) over time to lead to a 0.1s hop size. The final {Xi}
are then patches of 40 successive frames (corresponding to

4s.) with a hop size of 5 frames (corresponding to 0.5s.).

2.2 SSM-loss

Given a sequence of inputs {Xi}i∈{1...T} , we apply the

same encoder fθ individually to each Xi to obtain the cor-

responding sequence of embeddings {eθi }i∈{1...T}. Those

are then L2-normalized. We can then easily construct an

estimated SSM, Ŝθ
ij , using a distance/similarity/divergence

g between all pairs of projections:

Ŝ
θ
ij = g(eθi = fθ(Xi), e

θ
j = fθ(Xj)), ∀i, j (1)

We use here a “scaled” cosine-similarity for g which, be-

cause the embeddings are L2-normalized, reduces to

Ŝ
θ
ij = 1−

1

4
‖eθi − e

θ
j‖

2

2
∈ [0, 1] (2)

It is then possible to compare Ŝ
θ
ij to a ground-truth bi-

nary SSM, Sij , derived from annotations. We consider

this as a multi-class (a set of T 2 binary classifications)

problem and hence minimize the sum of Binary-Cross-

Entropy (BCE) losses. However, given the unbalancing

between the two classes in Sij (which contains much more

0 than 1), we used a weighting factor λ computed as the

percentage of positive values in Sij . The lower λ is, the

more we put emphasis on positive (Sij=1) examples:

Lθ
SSM =−

1

T 2

T
∑

i,j=1

(1−λ)
[

Sij log(̂S
θ
ij)
]

+λ
[

(1−Sij)log(1−Ŝ
θ
ij)
]

(3)

Since the computation of the SSM Ŝ
θ
ij is differentiable

w.r.t. to the embeddings {eθi }, we can compute
∂Lθ

SSM

∂θ
:

5 We utilized patches as input (rather than frames) because we believe
that homogeneity exists at the pattern level rather than the frame level.
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z
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We can then use standard gradient-descent algorithms to

optimize θ which will jointly optimize fθ for all the Xi.

Optimizing directly Ŝ
θ
ij has relationship with Metric

Learning / Contrastive Learning in which the A,P ,N are

chosen based on their similarity (such as in Wang et al.

[27]). In comparison, we consider here simultaneously all

possible pairs of time as A,P ,N . This is actually in line

with the fact that we aim at learning features relative to a

track (see part 2.4) and we therefore need to consider si-

multaneously the interaction between all projections feθi g.

2.3 Novelty-loss

We propose to learn the kernels K
θ such that when con-

volved with the estimated SSM Ŝ
θ
ij (see eq.(2)) along its

main diagonal the resulting estimated novelty score n̂θ
i ap-

proximate a ground-truth novelty score ni. This kernel

convolution can be simply implemented as an extra con-

volution layer (without bias) on top of the estimated SSM

Ŝ
θ
ij with a sigmoid output activation. We then define the

novelty-loss as

L
θ
nov =

1

T

T∑

i=1

BCE(n̂θ
i ;ni) (5)

2.4 Relative feature learning

In previous works dealing with feature learning for MSA

it is assumed that, once trained, the network fθ always

projects a given segment Xi in the same way whatever its

surrounding context.

We advocate here that for the task of MSA the projec-

tion of Xi should depend on its context. The motivation

for doing so is that the features that highlight the tempo-

ral structure of a music track usually depend on the track

itself. For example, if the instrumentation or the timbre re-

mains constant over the track, the structure may arise from

variation of the harmonic content; in other cases, it will be

the opposite. Therefore, feature learning for MSA should

be made relative-to-a-track.

To let each feature Xi “know” about surrounding times

features fX1 :::Xi−1;Xi+1 :::XT g we introduce layers

of Self-Attention (SA) [35] in our encoder 6 .

2.5 Network architecture fθ

The architecture of the encoder fθ is given in Figure 1. It is

made of a succession of 5 consecutive convolution blocks

followed by N blocks of Transformer-Encoder.

Each convolution block is made of a 2D convolution

followed by a PReLU [36] activation and a 2D max-

pooling. The kernel size (kf;kt), the number of channels

nc and pooling size (pf;pt)) of each layer are the follow-

ing: layer-1: (kf;kt)=(5,5) nc=32 (pf;pt)=(2,2), layer-

2: (5,5) 32 (2,2), layer-3: (5,5) 64 (2,2), layer-4: (5,5) 64

(2,2), layer-5: (5,2) 128 (5,2). The output of the last convo-

lutional blocks has dimension (1,1) with nc=128 channels

and is flattened to a 128-dim vector.

Each input Xi is independently projected using the

convolutional blocks. These outputs are then considered

as a temporal sequence which is fed to N blocks of

Transformer Encoder (each made up of a SA layer with

8 heads, skip-connection, a normalization layer and two

fully-connected layers with an internal dimension of 128).

The outputs are then passed to a tanh and L2-normalized.

They form a sequence of embeddings feθi gi2 f1:::T g with

e
θ
i 2 R128 which are used to compute Ŝ

θ
ij .

The size of the kernels K
θ is fixed to (41,41) which

roughly corresponds to 20s. The kernels K
θ are either

initialized randomly or initialized with checkerboard ker-

nels similar to the ones of [32]. In this case, checkerboard

kernels have the same size (41,41) but are damped with

Gaussian function with different σ (randomly chosen in the

range [3s;5s]). We used 3 different kernels Kθ which are

6 Note that the use of the SSM-loss alone does not allows fθ to encode
relative features; this is the task of the SA.
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then combined using (1x1) convolution. The diagonal of

the resulting feature-map then goes to a sigmoid activation

and is considered as the estimated novelty n̂
θ
i .

Our architecture remains lightweight with a number of

parameters ranging from 268K to 567K depending on the

number of Transformer Encoder blocks (from N=0 to 3).

2.6 Training.

We train our network by minimizing jointly the two losses

defined by eq. (3) and eq. (5):

L
θ = αLθ

SSM + (1− α)Lθ
nov (6)

We used the ADAM optimizer with a learning rate of

0.001, used early-stopping monitoring Lθ on the validation

data with a patience of 50 and a maximum of 500 epochs.

Considering that we need the whole sequence of embed-

dings feθi g of a track to compute Ŝ
θ
ij and get the gradients

@Lθ

@ θ
, the mini-batch-size m is here defined as the number

of tracks. We used a value of m=10 tracks.

2.6.1 Generating ground-truth for training

Ground-truth SSM Sij . The ground-truth SSM, Sij , is

constructed using annotated segments (start and end time)

and their associated labels. We rely on the homogene-

ity assumption, i.e. we suppose that all times ti that fall

within a segment are identical since they share the same la-

bel. If we denote by seg(ti) the segment ti belongs to and

by label(seg(ti)) its label, we assign the value Sij = 1 if

label(seg(ti)) = label(seg(tj)) and 0 otherwise. Note that

we could relax this identity constraint to allow represent-

ing similarity between labels (for example using an edit

distance between labels). This is for example important

for RWC-POP dataset, where labels denotes some proxim-

ities (verse A and verse B) but are here considered as

different. Also, it could be important to consider the case

of non-homogeneity of the repetitions and create a ground-

truth Sij made of “sub-diagonals” rather than “blocks”.

Ground-truth novelty score ni. The ground-truth

novelty score, ni, is also constructed using the anno-

tated segments (start and end time). We set ni to 1

when segment changes at time i, 0 otherwise. As pro-

posed by [37] we smooth over time the boundary annota-

tions by applying a low-pass filter with a triangular-shape

f0:25;0:5;1;0:5;0:25g.

3 Evaluation

We assess here the performance of our proposal using var-

ious test sets, compare it to previously published results,

conduct an ablation study, and illustrate its results.

3.1 Datasets

For training we used a subset of 693 tracks from the Har-

monix dataset [38] 7 and the 298 tracks of the Isophonics

dataset [39]. For testing we used

7 Given the non-accessibility of Harmonix audio, those have been
downloaded from YouTube and re-annotation has been necessary be-
cause of non-synchronicity of the original annotations.

Datasets T S L S L

Harmonix 693 13 17.15
Isophonics 298 11 15.98

RWC-Pop-AIST 100 17 14.31

Upper Lower
SA-Pop (An1) 276 12 15.49 30 5.73
SA-Pop (An2) 175 12 14.64 31 5.67

SA-IA (An1) 444 14 18.32 50 4.43
SA-IA (An2) 244 12.5 18.67 37 7.00

SA-Two (An1) 882 11 18.25 30 6.89
SA-Two (An2) 882 11 17.76 31 6.39

Table 1. Description of the datasets used in our evalua-

tion: number of tracks T , median value of the number of

segments per track S , median value of segment duration L

in seconds (note that [29] indicate L in number of beats).

• RWC-Pop-AIST the 100 tracks of the RWC-Pop [40]

with AIST annotations [41] and the following three

subsets of the SALAMI [3] dataset:

• SA-Pop is the subset of SALAMI tracks with CLASS

equal to Popular,

• SA-IA is the subset of SALAMI tracks with SOURCE

equal to IA (Internet Archive),

• SA-Two is the subset of SALAMI tracks with at least

two annotations.

For each SALAMI subset we considered the two an-

notations (An1, An2) and the two levels of flat anno-

tations (Upper, Lower); those correspond to the files

textfile{1,2}_{upper,lowercase}.txt.

In Table 1 we describe these datasets. According to the

values of L our training-sets better match the Upper anno-

tations than the Lower ones of SALAMI. Also, the size of

our kernels Kθ (roughly 20s., see part 2.5) assumes homo-

geneous segments of roughly 10s. and are therefore closest

to the L of Upper annotations.

3.2 Segment detection from novelty score

To get the estimated segment boundaries from the esti-

mated novelty score n̂
θ
i we used a simple peak-to-mean

ratio algorithm similar to [25]. Using the same notations

as [25] eq. (5), we compute the mean with a window of du-

ration 2T=20s, and then detect local peaks with a threshold

τ=1.35 and a minimum inter-distance of 7s.

3.3 Performance metrics

We evaluate the performance of segment boundary

detection using the common Hit-Rate metrics us-

ing precision-windows of 3s and 0.5s. We only

display here the Hit-Rate F-measures denoted by

HR3F and HR0.5F. We used mir_eval [43] with

mir_eval.segment.detection ignoring track start

and end annotations (Trim=True). We point out that

without “trimming” (the start and end time) we would gain

+3% on average (from .713 to .743 for RWC-Pop).
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RWC-Pop-AIST SA-Pop SA-IA SA-Two
HR.5F HR3F HR.5F HR3F HR.5F HR3F HR.5F HR3F Annotation

Grill [23, 42] GS1 .506 .715 - - - - .541 .623 Up./An-*
McCallum [25] Unsynch. - - - - - .497 - -

Beat-synch. - - - - - .535 - -
Salamon [30] DEF0.5,0.5/∗

µH,γH
- - - - - - .337 .563 Up./An-*

Wang [27] scluster/D/eu/mul .438 .653 .447 .623 - - .356 .553 Up./An-*
Buisson [29] HE0/HE1 - .681 - - - - - .597 / .595 Up./An-1/2

- - - - - .611 / .600 Low./An-1/2

Ours (best conf.) .399 .713 .298 / .295 .631/ .624 .250 / .261 .520 / .511 .231 / .237 .521 / .530 Up./An-1/2
.296 / .318 .570 / .610 .302 / .336 .547 / .612 .287 / .287 .589 / .589 Low./An-1/2

Ablation study N
N=3/α=0.5/K:train-Init:chck .713 .532 .472 .448 Up./An-1
N=2/α=0.5/K:train-Init:chck .701 .535 .474 .449 Up./An-1
N=1/α=0.5/K:train-Init:chck .677 .631 .520 .521 Up./An1
N=0/α=0.5/K:train-Init:chck .696 .535 .459 .443 Up./An-1

Ablation study α
N=3/α=1/K:train-Init:chck .154 .121 .102 .111 Up./An-1
N=3/α=0/K:train-Init:chck .007 .120 .026 .095 Up./An-1

Ablation study K
θ

N=3/α=0.5/K:train-Init:randn .713 .543 .470 .457 Up./An-1
N=1/α=0.5/K:train-Init:randn .709 .547 .470 .457 Up./An-1
N=3/α=0.5/K:fix-Init:chck .330 .250 .199 .196 Up./An-1

Table 2. Results of segment boundary detection using various test-sets and configurations

3.4 Comparison with previous works

In the following we will compare our results with the ones

previously published by Grill and Schlüter in [23,42], Mc-

Callum et al. in [25], Salamon et al. in [30], Wang et al.

in [27] and Buisson et al. in [29]. We first check if their

test-sets match ours.

For SA-Pop, Wang [27] used “a subset with 445 an-

notated songs (from 274 unique songs) in the “popular”

genre”. This roughly matches our SA-Pop (An1)+(An2)

which provides 276+175=451 annotations. They used the

Upper-case annotations (personal communication).

For SA-IA, McCallum [25] used “the internet archive

portion of the SALAMI dataset (SALAMI-IA) consisting of

375 hand annotated recordings”. This is much lower than

our SA-IA (An1)+(An2) which provides 444+244=688 an-

notations. Moreover, it is not clear whether they used the

Upper, Lower or Functional annotations.

Finally, for SA-Two, Salamon [30] Table 3 used the

Upper-case annotations of tracks with at least 2 annota-

tions (884 tracks); Wang et al. [27] “we treat each an-

notation of a song separately, yielding 2243 annotated

songs in total” and Buisson et al. [29] used the Upper and

Lower-case annotations of tracks with at least 2 annota-

tions (884 tracks). This roughly corresponds to our SA-

Pop (An1)+(An2) which has 882 tracks.

3.5 Results and discussions

Results are given in Table 2. The upper part shows pre-

viously published results, although not all systems were

evaluated on all test sets. The middle part shows the re-

sults achieved with the best configuration of our system.

For RWC-Pop-AIST, we obtained a HR3F= .713 8

which is comparable to those of Grill and Schlüter (.715).

However, for HR.5F our results are below (.399 < .506).

This can be explained by the fact that the hop-size of our

8 The Precision and Recall at 3seconds are P3F=.735, R3F=0.715

featuresfXig was chosen large (0.5s) and does not allow

to have a precise boundary estimation. We have chosen a

large hop size to reduce the size of Ŝθ
ij (hence the compu-

tation time and memory footprints); it also allows to keep

the size of the K
θ manageable. Because of this, all our

results with HR.5F are actually low. Therefore, we only

discuss the results for HR3F in the following.

For SA-Pop, we obtained a HR3F of .631/.624 9 for

the two Upper annotations (Up./An-1/2) which is slightly

above those of Wang et al. (.623). For the two lower an-

notations (Low./An-1/2) we get a HR3F of .570/.610 10 .

Wang et al. does not provide these results.

For SA-IA, we obtained a HR3F of .520/.511 11 for the

two Upper annotations and .547/.612 12 for the two Lower

annotations. This has to be compared to the .497 (unsyn-

chronized) and .535 (beat-synchronized) obtained by Mc-

Callum et al., but as explained, it is not clear whether they

used Upper, Lower or Functional annotations.

For SA-Two, we obtained a HR3F of .521/.530 13 for

the two Upper annotations. This is slightly lower than the

results of Wang et al. (.553), Salamon et al. (.563), Buis-

son et al. (.597) and largely below the ones of Grill and

Schlüter (.623). For the Lower annotations, we obtained a

HR3F of .589/.589 14 which is slightly below the ones of

Buisson et al. (.611). It should be noted however that in

our work we didn’t used any data from SALAMI, neither

for training or validation (such as early stopping).

For SA-IA and SA-two, our results are higher for the

Lower annotations than the Upper ones. This is surprising

since according to Table 1 the characteristics (L value) of

our training sets are closer to the Upper case. Also (see

footnotes 8–14), our algorithm tends to over-segment when

9 P3F=.581, R3F=0.760/ P3F=.566, R3F=0.771 → over-segmentation
10 P3F=.860, R3F=0.468/ P3F=.877, R3F=0.497 → under-segment.
11 P3F=.435, R3F=0.718/ P3F=.411, R3F=0.751 → over-segment.
12 P3F=.811, R3F=0.451/ P3F=.756, R3F=0.546 → under-segment.
13 P3F=.433, R3F=0.749/ P3F=.442, R3F=0.754→ over-segment.
14 P3F=.768, R3F=0.523/ P3F=.768, R3F=0.523→ under-segment.
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considering the Upper annotation and under-segment when

considering the Lower ones. Our kernel size is actually

between the L values of the Upper and Lower annotations.

3.6 Ablation study

In the lower part of Table 2 we perform an ablation study

of our system. For the SA-{Pop,IA,Two} test-sets, we only

perform the study using the Upper/An1 annotations

We first check the optimal number N 2 f0;1;2;3g of

layers of Transformer Encoder. We see that for all test-sets

the use of Transformer Encoder (N > 0) is beneficial. For

RWC-Pop-AIST, the optimal number is N=3 while for all

three SA-{Pop,IA,Two} test-sets it is always N=1.

We then check whether jointly optimizing the two

losses Lθ
SSM and Lθ

nov of eq. (6) is necessary. We consid-

ered three cases: α=1 (only optimizing Lθ
SSM ), α=0.5 (op-

timizing both), α=0 (only optimizing Lθ
nov). For all test-

sets, we see that optimizing jointly the two losses is highly

beneficial: for example, for RWC-Pop-AIST, HR3F=.713

with α=0.5, .154 with α=1 and .007 for α=0.

Finally, we check various configurations of the ker-

nels K
θ. K

θ is either [K:train-Init:chck]: trained start-

ing from checkerboard kernels initialisation, [K:train-

Init:randn]: trained starting from random initialisations,

[K:fix-Init:chck]: fixed (not trained) to checkerboard ker-

nels (we still train the 1x1 convolution). We see that for all

test-sets it is beneficial to train K
θ (the worst results are ob-

tained with [K:fix-Init:chck]). For RWC-Pop-AIST, the re-

sults are the same whether kernels are initialized randomly

or with checkerboard kernels. For SA-{Pop,IA,Two} the

checkerboard kernels initialization is beneficial.

3.7 Examples

Figure 2 illustrates the three kernels K
θ learned using

the [N=3/α=0.5/K:train-Init:chck] configuration. As one

can see, while the middle one looks close to the classical

checkerboard kernel of Foote [32] (but with an emphasis

on the diagonal), the first seems to highlight the transition

from a non-homogeneous to an homogeneous part; while

the third seems a re-scaled version of the second (homo-

geneity at a larger scale). Figure 3 illustrates the Ŝ
θ
ij and

n̂
θ
i obtained by our system on track-01 from RWC-Pop-

AIST (chosen as the first item of our test-set). We com-

pare the results when trained in the [N=3 / α=0.5 / K:train-

Init:chck] configuration and with the untrained system us-

ing [K:fix-Init:chck] for the kernels. For comparison we

indicate the ground-truth Sij and ni. In this figure, the

benefits of training both Lθ
SSM andLθ

nov appears clearly.

Reproducibility. The code and the

datasets used in this work are available at:

https://github.com/geoffroypeeters/ssmnet_ISMIR2023

4 Conclusion

In this work, we proposed a simple approach for deep

learning-based Music Structure Analysis algorithm: we
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Figure 2. The three kernels K
θ learned using the [N=3 /

α=0.5 / K:train-Init:chck] configuration.

Figure 3. [Top] Ŝθ
ij and n̂

θ
i obtained with untrained system

using [K:fix-Init:chck] for the kernels, [Middle] same with

[N=3 / α=0.5 / K:train-Init:chck], [Bottom] ground-truth

Sij and ni.

learn an encoder fθ such that the resulting learned fea-

tures allow to best approximate a ground-truth SSM; we

jointly learn segmentation kernels that when applied to the

estimated SSM we best approximate a ground-truth nov-

elty score. We also propose to learn relative features, i.e.

features relative to a track, by introducing Self-Attention

layers in our encoder. According to HR3F, our results are

either better than previous state-of-the-art (SA-Pop, SA-IA

unsynchronous), similar (RWC-Pop-AIST) or worst (SA-

Two). Our approach has the advantage to be lightweight

(around 500K parameters) and based on criteria which are

semantically linked to the task of MSA. Future works

will concentrate on making our approach applicable to

finer temporal resolutions, therefore allowing improving

our performances at HR.5F.
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