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ABSTRACT

In jazz, measuring harmonic similarity is complicated by

the common practice of reharmonization – the altering or

substitution of chords without fundamentally changing the

piece’s harmonic identity. This is analogous to natural

language processing tasks where synonymous terms can

be used interchangeably without significantly modifying

the meaning of a text. Our approach to modeling har-

monic similarity borrows from NLP techniques, such as

distributional semantics, by embedding chords into a vec-

tor space using a co-occurrence matrix. We show that the

method can robustly detect harmonic similarity between

songs, even when reharmonized. The co-occurrence ma-

trix is computed from a corpus of symbolic jazz-chord pro-

gressions, and the result is a map from chords into vectors.

A song’s harmony can then be represented as a piecewise-

linear path constructed from the cumulative sum of its

chord vectors. For any two songs, their harmonic simi-

larity can be measured as the minimal surface membrane

area between their vector paths. Using a dataset of jazz

contrafacts, we show that our approach reduces the median

rank of matches from 318 to 18 compared to a baseline ap-

proach using pitch class vectors.

1. INTRODUCTION

Measuring similarity between songs is important for many

music information retrieval tasks, for example, recom-

mendation systems, copyright infringement detection, and

genre classification systems. Many different types of fea-

tures can be used to compare songs, but the specific focus

of this paper is on jazz harmony as represented by the sym-

bolic chord progressions found on leadsheets.

The analysis of harmonic similarity has been studied us-

ing N-grams [1], parse trees [2, 3], and NLP methods such

as TF-IDF, Latent Semantic Analysis (LSA), and Doc2Vec

[4]. The approach taken in this paper is based on embed-

ding chord symbols into a vector space through the compu-

tation of a co-occurrence matrix [5]. As will be seen when
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we describe the data in Section 2, many chord symbols oc-

cur only rarely. To reduce computational problems due to

sparsity, the dimensionality of chord space should be re-

duced [6]. A typical machine learning approach for this

might use an algorithm such as truncated singular value

decomposition after vectorization [7]. In this work, how-

ever, we use music theory to reduce the number of effective

chord symbols prior to vectorization, which in turn reduces

the chord space dimensionality. In the ensuing sections

we describe the data, explain our approach to dimension-

ality reduction, and give computational details of how we

compute the co-occurrence matrix. We then explain how

the chord vectors generated from the co-occurrence matrix

are used to represent chord progressions, and we present a

novel harmonic-similarity metric, the membrane area.

The experimental part of our paper is based on analyz-

ing contrafacts. In jazz, a contrafact is a song whose har-

mony is similar to that of another song, but which has a

different melody [8]. The tune I Got Rhythm, by George

Gershwin (1930), is a well-known source of many con-

trafacts, 1 and there are numerous other examples [9–11].

In addition to the difference in melody, contrafact chord

progressions often feature reharmonization, a common

practice in jazz that makes chord substitutions in a song

while maintaining its harmonic identity [12]. Reharmo-

nization is a core characteristic of jazz – so much so that

there are typically reharmonizations from chorus to chorus

even in a single performance of a jazz song.

2. THE DATA

The data used in this paper is a corpus of symbolic chord

progressions similar to those found in jazz fake books,

such as the Real Book [13]. The progressions are mainly

from jazz standards, but also include some blues, jazz-

blues, modal jazz, and jazz versions of pop tunes. The

corpus is derived from a collection distributed with Impro-

Visor, an open-source music notation program. 2 Our

modifications remove control information used by the

Impro-Visor application, retaining the musical content and

song-specific metadata. We have performed numerous

quality checks on the data, have made corrections where

required, and have enriched some of the metadata. The re-

1 https://en.wikipedia.org/wiki/Rhythm_changes
2 https://www.cs.hmc.edu/~keller/jazz/

improvisor/
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sulting corpus and the code we used to generate our ex-

amples is available on GitHub. 3 The Impro-Visor cor-

pus provides chord progressions for 2,612 songs, and is

the largest digital collection of jazz chord progressions we

know of. For comparison, the applications iRealPro 4 and

Band-in-a-Box 5 contain chord progressions for roughly

1400 and 226 jazz standards, respectively. The Weimar

Jazz Database contains chords for 456 jazz songs. 6

Of the 134,182 chord symbol instances in the corpus,

there are 1,542 unique symbols, of which many are rare,

with 20% occurring just once, and 50% fewer than six

times. As the corpus consists mainly of jazz standards,

there is a preponderance of 7th chords, comprising at least

the root, 3rd, 5th, and 7th notes. These types of chords of-

ten have additional extensions (9th, 11th, 13th) and chro-

matic alterations (♭9, ♯9, ♭5, ♯5). A common variation of

jazz chords replaces the 7th with a 6th for major7 and mi-

nor7 chords. As 7th chords are the basic harmonic unit

in jazz [14], and make up 77% of our corpus, they are

the focus of our approach to dimensionality reduction de-

scribed in the next section. Of the remaining chords, 16%

are three-note chords (triads), and 7% are drawn from a va-

riety of special types, as shown in Table 1, which provides

a list of all the types and their frequencies.

Type Percentage

7th chords (and extensions) 76.939%

major triads 11.484%

slash chords 4.781%

minor triads 4.320%

sus chords 1.364%

no chord 0.458%

augmented triads 0.392%

major triads add9 0.127%

diminished triads 0.095%

power chords 0.031%

polychords 0.009%

Table 1. Corpus chord types and their frequencies

3. DIMENSIONALITY REDUCTION

Our approach to reducing dimensionality is based on map-

ping chords to a reduced vocabulary of functionally equiv-

alent symbols (similar to [15]). This is important because

20% of the chords in the corpus occur only a single time

(known as hapax legomena), and without additional pro-

cessing, these types of terms would provide no predic-

tive value [16]. Many techniques are used in NLP to bet-

ter leverage hapax legomena. For example, stemming,

lemmatization, and thesauri are all useful. This paper

3 https://github.com/carey-bunks/

Jazz-Chord-Progressions-Corpus
4 https://www.irealb.com/forums/showthread.php?

12753-Jazz-1350-Standards
5 https://members.learnjazzstandards.com/sp/

biab-jazzstandards/
6 https://jazzomat.hfm-weimar.de/dbformat/

dbcontent.html

takes a similar approach for harmony, making use of mu-

sic theory to reduce the dimensionality of chord space. Our

method is akin to lemmatization, applying concepts from

functional harmony to group similar chords into classes

(for example, see [17]). Based on standard practices in

jazz [12,18,19], we reduce the set of 1,542 chord symbols

to 61 chord classes, as detailed in the following sections.

3.1 7th Chord Types

Our choice of base chord types is built on the four-note

7th chords diatonically generated from the major scale, and

making up 77% of our corpus. These are the major7 (M),

minor7 (m), dominant7 (7), and minor7♭5 (h), where the

symbols shown in parentheses are abbreviations we use in

this paper. To these we add a fifth base chord type, the

diminished7 (o). Combining the five types with the root

notes from the 12 pitch classes yields 60 chord classes.

Instances of these classes can occur with extensions or al-

terations, and we map these to the base class without ex-

tension/alteration. For example, we map the symbols Cm9

and Cm11 to the Cm7 class; C7♭9, C7♯5, and C13 to the

C7 class; and CM7♯11 to the CM7 class. In addition, in ac-

cordance with reharmonization practices, we assign chords

such as CmM7 to the Cm7 class and C6 to the CM7 class.

We also include the symbol NC (no chord) to account for

the absence of harmony (0.5% of the corpus).

3.2 Other Chord Type Mappings

In the following discussion, we describe a rationale for

mapping the remaining 22.5% of the symbols into classes

of the five base types defined above. The mapping choices

described in the following discussion are imperfect, but

they are simple to implement, and we show they are ad-

equate for our application.

3.2.1 Triads

Triads represent 16% of the corpus. As they do not con-

tain a 7th note, mapping them to the base chord types can

be ambiguous. For example, a C major triad shares all of

its notes with both the CM7 and C7 chords. We attempt to

resolve triad ambiguities using principles from tonal har-

mony and the local harmonic context. Based on the chord

following a triad, we decide whether it has a subdominant,

dominant, or tonic function [19]. For example, for a ma-

jor triad, if the root of the following chord is a fifth down

and a member of the major7 or minor7 classes we assign

the triad to the dominant7 class with the same root. Other-

wise, we assign it to its corresponding major7 class. Major

triads with an added 9th are handled in the same way. Aug-

mented triads share their notes with dominant7♯5 chords,

an alteration of the dominant, and so we map these to the

dominant7 class with the same root. Finally, we map all the

minor and diminished triads to their corresponding minor7

and diminished7 classes, respectively.

3.2.2 Sus Chords and Slash Chords

Sus chords also have a harmonic function that depends on

context [18]. When followed by a dominant7 chord with
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the same root, they act like a subdominant and we opt to

map them to a minor7 class with a root a fifth above. For

example, a G7sus4 would map to a Dm7. Otherwise, they

act like a dominant and we map them to the dominant7

class with the same root. Slash chords are chords played

over a specific bass note, for example C/G or Dm7/G,

where the symbol above (to the left of) the slash is the

chord and below is the bass note. If the bass note belongs

to the chord above the slash (for example, C/G), it is an in-

version. For such cases, we map it to the class of the chord

above the slash. Slash chords are also commonly used to

represent sus chords. For example, Dm7/G is harmonically

equivalent to G9sus4. We map these according to the pro-

cess for sus chords. For all other slash chords, we map the

chord as if the bass note were an extension or alteration of

the chord above the slash.

3.2.3 Power Chords and Polychords

Power chords consist of just two notes, a root and a fifth.

As they have no 3rd or 7th, they are harmonically ambigu-

ous. With only 42 instances in our corpus, we have opted

to map these chords to the no-chord class. With only 12

instances, polychords are also rare. These chords, used

mainly by pianists, consist of a lower triad and an upper

triad or 7th chord. We map polychords according to their

lower structure, interpreting the upper structure as a col-

lection of extensions or alterations.

4. KEY SIGNATURE BASED REPRESENTATION

To make distributional semantics more effective, we trans-

pose all songs to a common key, and represent them in

Roman numeral notation. However, transposition requires

knowing the correct key of each song, and from extensive

manual checking, we know that our database contains a

fair number of songs for which the stated key signature is

in error. For this reason, we introduce a key signature esti-

mation algorithm, as described in the following section.

4.1 Key Signature Estimation Algorithm

Several authors have proposed key estimation algorithms

for music information retrieval tasks [20–24]. However,

our objective is not to estimate the key that is cognitively

perceived by a listener, but rather a simpler problem, the

key signature that minimizes the number of accidentals

needed when writing out the song’s chords. Some prior

work exists for this [25], however, it is based on machine

learning models applied to MIDI data for classical music.

Our algorithm selects the key signature most consistent

with the chord progression. For each chord in a progres-

sion, we map it to one of the described 61 classes, and

identify all the major scales it could belong to (excluding

diminished7 and no chord classes). The major scale that

accumulates the most beats is the resulting estimate of the

key signature for that song.

Figure 1 provides a concrete illustration of how the key

estimation algorithm works for the case of a short chord

progression: A7-Dm7-G7-CM7-CM7. Each column of the

table represents one measure, and in this example, there is

one chord per measure. The column labels correspond to

the chords, and each row label is a key signature whose

major scale diatonically contains one or more of the chords

in the progression. As shown, the A7 chord belongs to D

major; the Dm7 chord belongs to B♭, C, and F major; G7

belongs to C major; and CM7 belongs to both C and G ma-

jor. Presuming four beats per measure, C accumulates the

most beats (16), and is the resulting key signature estimate.

Figure 1. Illustration of key signature estimation

4.2 Algorithm Evaluation

As already mentioned, there are quite a few songs in our

corpus where the key signature is incorrect or in doubt.

Nevertheless, it is worthwhile comparing the outputs of

our key estimation algorithm with the keys recorded in the

corpus. Of the 2,612 songs, the algorithm concurs with

the database for 1,763 (67.5%) of them. For the 849 songs

with database key signatures that do not agree with our

estimates, we use the Circle of Fifths as a distance met-

ric to evaluate the magnitude of differences between the

two. Adjacent key signatures on the circle of fifths cor-

respond to major scales that differ in a single pitch class.

Table 2 shows the distribution of circle-of-fifths distances

between estimated and database key signatures for all of

the songs in the corpus. The first row is the distance in

number of sharps or flats from the estimated to the database

key, where 0 corresponds to agreement. The last column

of Table 2 is labelled “Amb.” for ambiguous. There are

123 songs in the database for which the key estimation al-

gorithm returns a non-unique result, finding two or more

equally good major scales. This occurs for 4.7% of the

songs in the corpus, and when it does our estimation algo-

rithm defaults to the database key.

Dx 6♭ 5♭ 4♭ 3♭ 2♭ 1♭ 0 1♯ 2♯ 3♯ 4♯ 5♯ Amb.

Frq 10 22 33 55 99 304 1763 183 22 25 12 1 123

Table 2. Key signature estimation statistics with the circle

of fifths distance Dx by the frequency of occurrence Frq

4.3 Mapping to Roman Numeral Notation

Once a song’s key has been estimated, all the chords in

its progression can be mapped to Roman numeral notation.

Table 3 shows the Roman numerals corresponding to chord

roots for C major. As an example, the sequence of chords

A7-Dm-G7-CM maps to vi7-iim-v7-iM. In our system, we
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represent minor keys by their relative major, so the relative

minor cadence, Bm7b5-E7-Am7, maps to viih-iii7-vim.

Root C D♭ D E♭ E F G♭ G A♭ A B♭ B

RN i ♭ii ii ♭iii iii iv ♭v v ♭vi vi ♭vii vii

Table 3. Roman numeral notation: chord roots in C major

5. VECTOR REPRESENTATION

Sections 3 and 4 described our approach for reducing the

dimensionality of chord space, distilling the 1,542 chord

symbols in our corpus to 61 classes. In this section we de-

scribe our method for embedding the chord classes into a

vector space. Our design objective is that common rehar-

monizations be close to each other in cosine similarity, and

it is known that the co-occurrence matrix can capture this

type of characteristic [5, 26–28].

Given a corpus of D chord progressions, with progres-

sion d ∈ {1, 2, . . . , D} containing Nd chords with in-

dices 1, 2 . . . , Nd, we can represent the corresponding se-

quence of chord symbols as sd,1, sd,2, . . . , sd,Nd
. We de-

fine the symmetric, sliding context window, Wk,d, of nom-

inal width Nw with the indices Wk,d = [wl, . . . , (k −
1), (k+1), . . . , wr], where the left and right endpoints are

wl = max(k − Nw, 1) and wr = min(k + Nw, Nd), re-

spectively. With these definitions, the (i, j)th element of

the co-occurrence matrix, Ci,j is computed by

Ci,j =
D
∑

d=1

Nd
∑

k=1

∑

w∈Wk,d

{

1, if sd,k = ci and sd,w = cj

0, otherwise

(1)

This produces a square, symmetric matrix whose row Ci

(or alternatively, column) is a vector representations of the

ith chord class ci. As it will be useful in the following,

we normalize each row to have unit length. Because co-

occurrence matrices capture contextual information, the

vectors of chord classes that have similar harmonic func-

tion are expected to be close to each other with respect to

the cosine similarity measure, and this seems to be borne

out by an inspection of certain chord vectors. For exam-

ple, of 60 chord classes, the closest vector to the v7 is its

tritone substitute, the ♭ii7, and the closest to the iim is the

iih, a common substitute from the parallel minor scale (see

modal interchange in [19]).

6. MEMBRANE-AREA DISTANCE METRIC

We use the co-occurrence vectors to represent chord pro-

gressions in a way that represents each chord type, du-

ration, and metric position, while being robust to rehar-

monizations. The normalized chord vectors derived from

the co-occurrence matrix can be used to plot the path of

a song’s progression through 61-dimensional space. Start-

ing from the origin, the sequence of chord vectors can be

concatenated from head to tail, beginning with the first,

and terminating with the last vector (see Figure 2). Each

unit vector is scaled by the number of beats of the chord

it represents, and the result is a piecewise linear function

through R
61. The comparison of two songs in this space

can be formulated as a trajectory comparison problem, for

which there are many existing techniques [29]. The most

popular ones, however, are not well adapted to our prob-

lem. The Fréchet distance, dynamic time warping, longest

common subsequence, and the edit distance are all based

on matching and comparing points, and would not directly

factor in information about reharmonized chords embodied

in the co-occurrence vectors. For this reason, we introduce

a new metric that accounts for reharmonizations by com-

puting the membrane area between the paths of two songs.

Expressed formally, we represent song vector paths by

piecewise linear functions of the form f(t) ∈ R
61, where

t ∈ [0, 1] is a parametric variable representing the number

of normalized beats traversed in the song. We can move

along the entire length of f in discrete, equal increments,

dt, where the starting point of the function, f(0) at t = 0
is the origin, and the end point of the function is at t = 1.

Given two songs and their corresponding piecewise linear

functions, f(t) and g(t), and letting K = 1/dt, we can

define a distance metric between them as the area of a 2D

membrane, M , stretched between the two paths. M is cal-

culated as the integral obtained in the limit of

M(f , g) = lim
dt→0

K
∑

k=0

∥f(kdt)− g(kdt)∥dt, (2)

where ∥ · ∥ is the Euclidean norm. The piecewise linear

functions for two identical chord progressions would, natu-

rally, overlay each other, yielding a membrane area of zero.

Two harmonically similar songs should trace out similar

paths keeping the membrane area small. For example,

two chord progressions that differ in just a tritone substitu-

tion will only slightly perturb the path and the membrane

area between songs. Figure 2 is a notional illustration of

how the measure in Equation 2 is evaluated. The red and

blue paths represent two different songs, each having three

chords. Each song begins at the origin, and the chord vec-

tors are added head-to-tail to trace out a piecewise linear

path. The membrane area metric is approximated by sum-

ming the lengths of the N equally spaced black line seg-

ments drawn between the two songs. Note that this way of

representing the harmony of a song accounts for positions

and durations of each chord in the progression, as well as

capturing harmonic similarities of chord transitions.

7. EXPERIMENTS

We have designed some experiments based on a set of jazz

contrafacts listed in a Wikipedia article. 7 The list has 252

jazz songs whose harmonies are known to be based on

other songs (see also [30]). A subset of 91 contrafacts are

available in our corpus, but for 11 of them, only a section

of the harmony is borrowed, and we remove these from the

list. The basic structure of all of our experiments is the

same: for each contrafact, we compute the membrane area

7 https://en.wikipedia.org/wiki/List_of_jazz_

contrafacts
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Figure 2. Conceptual illustration of the membrane-area

distance metric for two, 3-chord sequences

distance between it and each of the other 2,611 songs in

our corpus. We then sort the songs from smallest mem-

brane area to largest, and note the original song’s rank in

that list. Because of reharmonizations, we don’t expect the

membrane area to be zero for all contrafact-original pairs,

but matches should rank high in the list. Original songs

often inspire multiple contrafacts, and some may be closer

to each other than to the original. For these reasons, we

use the histogram of original song rankings to present the

overall performance of our method, and we use the median

rank as a method of comparison between approaches.

7.1 Using Co-Occurrence Vectors

We evaluated six variants of our approach using co-

occurrence chord vectors. The first three were based on

the context window widths Nw = [1, 2, 3]. The second

three variants used the same context window values, but

applied to a filtered version of the chord progressions. For

each chord progression, the filter collapses adjacent iden-

tical chords to a single instance. For Nw = 1, this has

the effect of eliminating the co-occurrence of chords with

themselves, making the diagonal of the co-occurrence ma-

trix zero. Of the six versions, the best result was obtained

for the filtered chord progressions with the context window

width Nw = 1. Figure 3 shows the histogram of original

song rankings for this case. The median rank is 18, mean-

ing that half of the original songs rank in the top 0.7% in

harmonic similarity to their contrafacts. As there is some

histogram mass out to rank 1,382, the histogram makes

use of a log-scale on the x-axis. It is likely that some of the

songs ranking better than the original are also contrafacts,

as the Wikipedia list is far from exhaustive, but it would

require substantial effort and expertise to evaluate this.

As noted, some original songs have inspired many con-

trafacts. As an example of this in our corpus, there are four

known contrafacts of the song All the Things You Are. The

ranks and membrane areas of the original song for each

contrafact are shown in Table 4. The original ranks highly

for three of the four contrafacts in the table. As the chord

progressions for Prince Albert and All the Things You are

are identical, their membrane area is zero. The contrafacts

Figure 3. Histogram of original song ranks for 80 con-

trafacts (median rank = 18)

Ablution and Boston Bernie have some chord substitutions,

and the original song ranks highly for both of them. The

song I Want More, however, does quite poorly, with a rank

of 758th out of the 2,611 songs in our corpus.

Contrafact Rank Membrane Area

Prince Albert 1 0.00

Ablution 1 6.72

Boston Bernie 2 7.72

I Want More 758 26.89

Table 4. Rank and membrane area for All the Things You

Are against its four contrafacts

To investigate, we use the jazz harmony visualization

tool described in [31] to display the chord progressions for

these two songs. The visualization shows a tabular format

with each rectangle representing a measure. Figures 4 and

5 show All the Things You Are and I Want More, respec-

tively. The background colors indicate the key the chords

belong to. Red is for the main key, which is A♭ for both

songs. Other colors indicate modulations. Some chords are

embedded in a geometric shape to indicate they are toni-

cizations: diamonds are secondary dominants, pentagons

are borrowed chords. As the figures illustrate, the two

songs have some similar chords, however, the sequences

of modulations are completely different. Whereas All the

Things You Are modulates through the tonal centers of C

major, E♭ major, G major, and E major, I Want More mod-

ulates to D♭ major and C minor. After verifying the latter’s

chord progression, 8 we conclude that, harmonically, these

two songs have very little in common, and we question the

annotation of this song as a contrafact.

7.2 Using Pitch-Class Vectors

To evaluate the effect of using co-occurrence vectors, we

compare with a baseline vector embedding scheme based

8 Jamey Aebersold play-along book, volume 82, Dexter Gordon

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

761



Figure 4. Chord Progression for All the Things You Are

Figure 5. Chord progression for I Want More

on converting chord symbols to their pitch-class vectors.

This is similar to the starting point of the approach used

in [32]. We begin by applying the key estimation algorithm

described in Section 4.1 to transpose all chords in our cor-

pus to the key of C. Subsequently, each chord in the corpus

is converted to a 12-dimensional binary pitch-class vector,

with ones in positions corresponding to pitch classes be-

longing to the chord, and zeroes elsewhere. Thus, for a C7

chord with the notes C, E, G, and B♭, the corresponding

pitch-class vector is [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0].

Following a similar schema as for the previous exper-

iment, the pitch-class vectors can be used to construct

piecewise linear paths, however, now they are constructed

in a 12-dimensional space. We use the membrane area as

previously to rank songs by harmonic similarity. Table 5

compares the performance of co-occurrence vectors for the

best case (chord progression filtering with a window size

of Nw = 1) versus pitch-class vectors using three metrics:

median rank, mean rank, and mean reciprocal rank. Co-

occurrence vectors outperform the pitch-class vectors by a

large margin for each of these criteria.

Vector Type Median Mean MRR

Co-occurrence 18 222 0.305

Pitch-class 318 457 0.200

Table 5. Comparison of median rank, mean rank, and

mean reciprocal rank (MRR) for the filtered-progression,

co-occurrence vectors (Nw = 1) and pitch-class vectors

8. DISCUSSION AND CONCLUSIONS

We showed how co-occurrence vectors can be used to

model harmonic similarity, and introduced the membrane

area as a evaluation metric that is well-adapted for handling

reharmonizations. We use music theory to reduce the di-

mensionality of chord space, and provide a comprehensive

map of all 1,542 chord symbols in our corpus to 61 classes.

The results are used to compute a dense co-occurrence ma-

trix without needing to resort to non-parametric approxi-

mations such as truncated SVD or gradient descent. Using

the cosine similarity measure, we show that the rows of

the co-occurrence matrix embody some characteristics of

common reharmonizations. Using the normalized rows of

the matrix as vector embeddings of chord classes, we mod-

eled songs as piecewise linear paths in R
61. A novel dis-

tance metric, the membrane area, was introduced and used

as a measure of harmonic similarity between songs. We

showed that the similarity metric can be used to retrieve

contrafacts from a database of jazz standards, and that it

performs significantly better than a baseline system using

binary pitch-class vectors as chord embeddings.

Although our approach is successful for contrafact de-

tection, there are several weaknesses that require future

work. Our key detection algorithm is simple and static,

despite the fact that jazz harmony exhibits many local key

changes (e.g. see Figures 4 and 5). We also treat minor

keys as equivalent to their relative major, which is not

strictly correct. The chord mapping scheme is limited in its

ability to distinguish common progressions such as triad

progressions i-iv and v-i. A richer chord vocabulary or

local key estimation could disambiguate such situations.

Our song-level similarity assumes only minor structural

differences between pieces. Modifying it to perform sub-

sequence matching would overcome this limitation.

We believe that the methods discussed in this paper

have many additional applications, such as those in eval-

uating harmonic complexity [33] and in musicology [34].

We intend to investigate whether our harmonic similarity

measure can be used to cluster jazz songs by composer or

decade of publication. Although our focus has been on

jazz, chords have similar functions across much of West-

ern tonal harmony. For this reason, we believe that this

work can be adapted to other genres such as classical, rock,

and pop. Furthermore, as our methods are based on captur-

ing the distributional semantics of harmony, the approach

may also be useful in discovering harmonic relationships

in non-Western music genres.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

762



9. ACKNOWLEDGEMENTS

The first author is a research student at the UKRI Centre

for Doctoral Training in Artificial Intelligence and Music,

supported by UK Research and Innovation [grant number

EP/S022694/1].

10. REFERENCES

[1] D. Ponsford, G. Wiggins, and C. Mellish, “Statistical

learning of harmonic movement,” Journal of New Mu-

sic Research, vol. 28, no. 2, pp. 150–177, 1999.

[2] W. B. De Haas, “Music information retrieval based on

tonal harmony,” Ph.D. dissertation, Utrecht University,

2012.

[3] M. Rohrmeier, “The syntax of jazz harmony: Diatonic

tonality, phrase structure, and form,” Music Theory and

Analysis (MTA), vol. 7, no. 1, pp. 1–63, 2020.

[4] D. Zahnd, “Similarity analysis of jazz tunes with vec-

tor space models,” Ph.D. dissertation, Hochschule für

Musik, Freiburg, 2022.

[5] K. Lund and C. Burgess, “Producing high-dimensional

semantic spaces from lexical co-occurrence,” Behavior

Research Methods, Instruments, & Computers, vol. 28,

no. 2, pp. 203–208, 1996.

[6] E. Bruni, N.-K. Tran, and M. Baroni, “Multimodal dis-

tributional semantics,” Journal of Artificial Intelligence

Research, vol. 49, pp. 1–47, 2014.

[7] C. O. S. Sorzano, J. Vargas, and A. P. Montano, “A

survey of dimensionality reduction techniques,” arXiv

preprint arXiv:1403.2877, 2014.

[8] B. D. Kernfeld, The New Grove Dictionary of Jazz.

Grove’s Dictionaries Incorporated, 2002, vol. 2.

[9] H. Martin, Charlie Parker, Composer. Oxford Uni-

versity Press, USA, 2020.

[10] D. H. Rosenthal, Hard Bop: Jazz and Black Music

1955-1965. Oxford University Press, 1994.

[11] T. Owens, Bebop: The Music and its Players. Oxford

University Press, 1996.

[12] D. Berkman, The Jazz Harmony Book: A Course in

Adding Chords to Melodies. Sher Music Co., 2013.

[13] H. Leonard, The Real Book. Hal Leonard Publishing

Corporation, 2016.

[14] R. Rawlins and N. E. Bahha, Jazzology: The Encyclo-

pedia of Jazz Theory for All Musicians. Hal Leonard

Corporation, 2005.

[15] X. Serra, “Audio-aligned jazz harmony dataset for

automatic chord transcription and corpus-based re-

search,” in in Proceedings of the International Society

for Music Information Retrieval Conference (ISMIR),

2018, pp. 483–490.

[16] J. Pierrehumbert and R. Granell, “On hapax legom-

ena and morphological productivity,” in Proceedings

of the Fifteenth Workshop on Computational Research

in Phonetics, Phonology, and Morphology, 2018, pp.

125–130.

[17] D. Harasim, C. Finkensiep, P. Ericson, T. J. O’Donnell,

and M. Rohrmeier, “The jazz harmony treebank,” in

in Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), 2020, pp.

207–215.

[18] M. Levine, The Jazz Theory Book. Sher Music Co.,

1995.

[19] J. Mulholland and T. Hojnacki, The Berklee Book of

Jazz Harmony. Berklee Press, 2013.

[20] M. Mauch and S. Dixon, “Simultaneous estimation of

chords and musical context from audio,” IEEE Trans-

actions on Audio, Speech, and Language Processing,

vol. 18, no. 6, pp. 1280–1289, 2009.

[21] J. Pauwels and J.-P. Martens, “Combining musicologi-

cal knowledge about chords and keys in a simultaneous

chord and local key estimation system,” Journal of New

Music Research, vol. 43, no. 3, pp. 318–330, 2014.

[22] T. Rocher, M. Robine, P. Hanna, L. Oudre, Y. Gre-

nier, and C. Févotte, “Concurrent estimation of chords

and keys from audio,” in in Proceedings of the Interna-

tional Society for Music Information Retrieval Confer-

ence (ISMIR), 2010, pp. 141–146.

[23] K. C. Noland and M. B. Sandler, “Key estimation us-

ing a hidden Markov model,” in in Proceedings of the

International Society for Music Information Retrieval

Conference (ISMIR), 2006, pp. 121–126.

[24] E. Benetos, A. Jansson, and T. Weyde, “Improving au-

tomatic music transcription through key detection,” in

Audio Engineering Society Conference. Audio Engi-

neering Society, 2014.

[25] F. Foscarin, N. Audebert, and R. Fournier-S’Niehotta,

“PKSpell: Data-driven pitch spelling and key signature

estimation,” arXiv preprint arXiv:2107.14009, 2021.

[26] S. Bordag, “A comparison of co-occurrence and simi-

larity measures as simulations of context,” in Interna-

tional Conference on Intelligent Text Processing and

Computational Linguistics. Springer, 2008, pp. 52–

63.

[27] A. Globerson, G. Chechik, F. Pereira, and N. Tishby,

“Euclidean embedding of co-occurrence data,” Ad-

vances in Neural Information Processing Systems,

vol. 17, 2004.

[28] L. Leydesdorff and L. Vaughan, “Co-occurrence matri-

ces and their applications in information science: Ex-

tending ACA to the web environment,” Journal of the

American Society for Information Science and Tech-

nology, vol. 57, no. 12, pp. 1616–1628, 2006.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

763



[29] K. Toohey and M. Duckham, “Trajectory similarity

measures,” Sigspatial Special, vol. 7, no. 1, pp. 43–50,

2015.

[30] F. Tirro, “The silent theme tradition in jazz,” The Mu-

sical Quarterly, vol. 53, no. 3, pp. 313–334, 1967.

[31] C. Bunks, T. Weyde, A. Slingsby, and J. Wood, “Vi-

sualization of tonal harmony for jazz lead sheets,” in

24th EG Conference on Visualization (EuroVis) Short

Papers, 2022, pp. 109–113.

[32] S. Madjiheurem, L. Qu, and C. Walder, “Chord2vec:

Learning musical chord embeddings,” in Proceedings

of the Constructive Machine Learning Workshop at

30th Conference on Neural Information Processing

Systems (NeurIPS), 2016.

[33] B. Di Giorgi, S. Dixon, M. Zanoni, and A. Sarti, “A

data-driven model of tonal chord sequence complex-

ity,” IEEE/ACM Transactions on Audio, Speech, and

Language Processing, vol. 25, no. 11, pp. 2237–2250,

2017.

[34] A. Moore, “Patterns of harmony,” Popular Music,

vol. 11, no. 1, pp. 73–106, 1992.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

764


