
SYMBOLIC MUSIC REPRESENTATIONS FOR CLASSIFICATION TASKS:
A SYSTEMATIC EVALUATION

Huan Zhang1 Emmanouil Karystinaios2 Simon Dixon1

Gerhard Widmer2 Carlos Eduardo Cancino-Chacón2

1 Queen Mary University of London, United Kingdom
2 Johannes Kepler University, Austra

ABSTRACT

Music Information Retrieval (MIR) has seen a recent

surge in deep learning-based approaches, which often in-

volve encoding symbolic music (i.e., music represented in

terms of discrete note events) in an image-like or language-

like fashion. However, symbolic music is neither an image

nor a sentence, and research in the symbolic domain lacks a

comprehensive overview of the different available represen-

tations. In this paper, we investigate matrix (piano roll), se-

quence, and graph representations and their corresponding

neural architectures, in combination with symbolic scores

and performances on three piece-level classification tasks.

We also introduce a novel graph representation for sym-

bolic performances and explore the capability of graph rep-

resentations in global classification tasks. Our systematic

evaluation shows advantages and limitations of each input

representation. Our results suggest that the graph represen-

tation, as the newest and least explored among the three

approaches, exhibits promising performance, while being

more light-weight in training.

1. INTRODUCTION

The deep learning boom has profoundly impacted MIR,

including research involving symbolic music representa-

tions (MIDI, scores, etc.). A large body of recent literature

focuses on adapting existing architectures from computer

vision and natural language processing to the field of sym-

bolic MIR. These approaches often treat music data as an

image (piano roll), as a sequence of language tokens, or,

more recently, as a graph. However, a piece of music is nei-

ther an image nor a sentence or graph, therefore, a critical

question still remains open concerning the choice of input

representations for symbolic music.

A source of complexity in symbolic music arises from

the different modalities of data such as scores and perfor-

mances. A score contains information about music notation

© H. Zhang, E. Karystinatos, S. Dixon, G. Widmer, C.E.

Cancino-Chacón. Licensed under a Creative Commons Attribution 4.0

International License (CC BY 4.0). Attribution: H. Zhang, E. Karysti-

natos, S. Dixon, G. Widmer, C.E. Cancino-Chacón, “Symbolic Music

Representations for Classification Tasks: A Systematic Evaluation”, in

Proc. of the 24th Int. Society for Music Information Retrieval Conf., Milan,

Italy, 2023.

and often includes rich hierarchically structured informa-

tion such as metrical structure and voicing. Symbolic music

performances, on the other hand, such as those recorded

on a MIDI-capable instrument, consist of a stream of con-

troller events. Extracting a hierarchical structure from such

a stream is not a trivial task [1–3]. Furthermore, such perfor-

mance data omit some of the rich information that a score

provides, such as pitch spelling and articulation markings,

but instead, it can include information about expression,

timing, local tempo, and performance dynamics.

Recent research has produced relatively large datasets

containing scores and performances at the symbolic level,

including efforts to align these [4–6]. Motivated by these

developments, we present an attempt to shed light on ques-

tions revolving around the input representation of symbolic

music for deep-learning-based MIR. We formulate an empir-

ical framework where we test multiple input representations,

models, and piece-level classification tasks.

In terms of input representations, we investigate piano

rolls, tokenized sequences, and graphs. We evaluate multi-

ple models based on these representations on three differ-

ent tasks: composer classification, performer classification,

and (playing) difficulty assessment. Furthermore, having

datasets containing both performances and their correspond-

ing scores such as ATEPP and ASAP [4, 5], allows us to

apply each combination of representation and task to ei-

ther score or performance. Our goal is to contribute an

experimental overview of different symbolic music repre-

sentations. The contributions of this work are threefold:

1. We investigate the performance and complexity of

matrix, sequence and graph input representations, and

their corresponding neural architectures (respectively

Convolutional Neural Networks, Transformers, and

Graph Neural Networks).

2. We compare the impact that the different information

contained in symbolic scores and performances has

on different piece-level classification tasks.

3. We introduce a new graph representation for symbolic

performances, and explore the capability of graph

representations in classification tasks.

2. RELATED WORK

The complexity of representing music data has been dis-

cussed in the literature [7–9]. Wiggins et al. [10] analyzed

848

the trade-offs of music representation systems with respect

to expressive completeness and structural generality. In the

age of deep learning, such considerations are still relevant

regarding the variety of machine-readable representations

such as piano rolls, MIDI-like sequences, NoteTuples, and

Musical Spaces [11, 12]. In this section, we focus on three

symbolic representations (matrix, sequence, and graphs)

and discuss their respective strengths and limitations.

Music as a Matrix: Similar to audio spectrograms, a

pitch-time representation that is typically used as input to

a CNN, the piano roll representation of music naturally

emerges as the symbolic equivalent. Piano rolls have been

widely applied in tasks such as automatic music transcrip-

tion [13, 14], classification of piece-level attributes such as

difficulty and composer [15–18], as well as generation of

music accompaniment or performed dynamics [19, 20].

A piano roll is a bare-bones representation of symbolic

music data, and, therefore, information such as key signa-

tures, articulation annotations, metrical structure, different

instrument parts, and voicing structure are not encoded in

the representation [11, 21].

Music as a Sequence: Modeling symbolic music as se-

quences has a longstanding tradition in MIR. The multiple

viewpoint system is a sequence representation that has been

widely used for music analysis, generation, and classifica-

tion [22–25], as well as the basis for cognitively plausible

models of expectation [26, 27]. In this system, musical

elements are represented by viewpoints [28], which are ab-

stract functions mapping musical events to abstract derived

features like pitch, interval, and melodic contour.

With the advances of deep learning-based language mod-

els, sequential representation of music as language tokens

has recently received a lot of attention in sequence-to-

sequence generative tasks from automatic orchestration [29]

to description-based medley generation [30]. Similar to a

stream of MIDI messages, various tokenization schemes

encode music features such as pitch, onset time, duration,

and velocity sequentially. Besides generation, large-scale

pre-training using music sequences has been applied to

downstream music understanding tasks [31, 32].

However, tokenized music sequence representations cre-

ate difficulty for models to learn the dependency of long

contexts. Length reduction methods such as Byte Pair En-

coding (BPE) [29, 33] aim to address the length overflow

problem by replacing the occurrence of frequent subse-

quences with new tokens.

Music as a Graph: A musical score can also be seen as a

graph where notes form the vertices and relations between

notes define the edges. Jeong and al. [34] introduced a

graph modeling of a musical score for generating expressive

performances. Recently, Karystinaios and Widmer [35]

presented a new modeling of the score graph based on three

different note relations and a Graph Convolutional Network

for cadence detection in classical music. A score graph

can be homogeneous or heterogeneous, i.e. having one or

several types of edges and/or vertices, respectively [36]. We

will investigate both heterogeneous and homogeneous score

graphs based on the representation used in [35].

Graph Neural Networks have gained popularity in re-

cent years, however, graph learning inherently presents

some limitations, such as over-smoothing in deep graph

networks [37] and restrictions of Message Passing, where

information in graph neural networks flows only between

edge relations predetermined by the representation (in con-

trast to a Transformer architecture where everything is in-

terconnected [38]).

3. METHODOLOGY

In this section, we describe the methodology followed, the

corpora used, and the experiments conducted to investigate

in-depth the different symbolic representations.

3.1 Representation Design

We briefly introduce a formal definition of each representa-

tion type, i.e. matrix, sequence, and graph. An example of

the three representations is shown in Figure 1.

3.1.1 Matrix

We define as a matrix representation of music a 2-

dimensional array M ∈ N
H×W that depicts musical notes

on the time axis, commonly referred to as a piano roll. The

vertical axis consists of 128 possible values attributed to

the MIDI pitch of note events, where we add three more

optional fields for the una corda, sostenuto, and sustain

pedals only applied on the MIDI performances.

In this work, we experimented with multiple channels

as used in Onsets and Frames [39]. The onset channel is a

binarized roll with activations at onset timestamps, while

the frame channel encodes the duration of the note and the

velocity of the MIDI event. For scores, the velocity values

are substituted by the voice index, i.e. the integer number

assigned to a note to indicate the index among the number

of independent voices. 1

3.1.2 Sequence

A symbolic music sequence S ∈ N
1×N is defined by a se-

ries of discrete tokens that represent attributes of notes. Vo-

cabularies such as Vpitch, VTimeShift, VVel assign seman-

tic meanings to tokens, and different tokenization schemes

translate into different grammars of sequence construction.

In this work, we test three popular tokenization schemes:

MIDILike [40, 41], REMI [42], and CompoundWord [43]

and use the implementation of the MidiTok library [44].

As there is no existing tokenizer for processing scores,

we implemented custom MusicXML tokenizers following

MidiTok’s framework, in the style of REMI as well as Com-

poundWord. The major difference is the timing of bars and

event positions, as well as the addition of score-specific

tokens such as VKeySig, VVoice. 2

Byte Pair Encoding (BPE) is a tokenizer add-on tech-

nique that has recently been applied to music sequence

learning [33]. It consists of a data compression technique

1 This voice information is commonly available in formats such as
MusicXML, **Kern, and MEI.

2 Full documentation is provided with our open-source tokenizer in the
project repository.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

849

Figure 1. Excerpt of Schubert’s Impromptu Op. 90 No.4 and its input visualizations (from left to right): generic matrix,

sequence (REMI-like) and graph.

that replaces the most common token subsequences in a

corpus with newly created tokens. BPE increases the vo-

cabulary size and shortens the sequence length. We follow

the best results from [33] and adopt a BPE with 4 times

the original vocabulary size. On average, this reduced our

sequence length between 55− 65% in both datasets.

3.1.3 Graph

A homogeneous score graph G is defined by a tuple (V,E)
of vertices and edges. V is the set of notes in a musical score

and E ⊆ V × V . Given a score with N notes, we extract

a matrix of k-dimensional note-wise features X ∈ R
N×k

based on features contained in the score or performance.

A heterogenous score graph G = (V,E,R) also includes

a set of relation types R such that for every edge e ∈ E,

e is of type r ∈ R if a condition defined by r holds. In

our work, we consider the following relations between two

notes u, v which define the edges e ∈ E:

• u and v have the same onset, i.e. on(v) = on(u),
then r = onset;

• The offset of u is the onset of v, i.e. off (u) = on(v),
then r = consecutive;

• The onset of u lies between the onset of v and the

offset of v, i.e. on(v) < on(u) ∧ on(u) < off (v),
then r = overlap.

The above relations only hold in the case of score graphs.

To adapt this to performance graphs, we use a window

tolerance ttol, such that if two notes (u, v) ∈ E and:

• |on(v)− on(u)| < ttol, then r = onset;

• |off (u)− on(v)| < ttol, then r = consecutive;

• on(v) < on(u)∧on(u) < off (v), then r = overlap.

In our configurations, for all graphs created from perfor-

mance MIDI, we set ttol = 30ms, a perceptual threshold of

expressive timing [45]. In addition to the above relations,

we consider the possibility of adding an inversely directed

edge for the overlap and the consecutive edge types, and

we name the inclusion of such edges inverse edges. For a

homogeneous graph Ghom and heterogeneous graph Ghet,

e ∈ Ghom =⇒ e ∈ Ghet.

The node features X are divided into two categories,

the basic and the advanced features. The basic features are

implicitly contained in any score or performance note such

as one-hot encoding of pitch class and octave of the note’s

pitch, and duration information. The advanced features

Figure 2. Left: front end for three representations, matrix,

graph, and sequence, from top to bottom. Right: fixed back

end with attention modules.

contains articulation, dynamics, and notation information

from the Partitura python package [46]. The detailed com-

putation of these features can be found in original partitura

paper [47] and the basis mixer [48].

3.1.4 Information Levels

Given the differences in information captured by symbolic

scores and performances (Sec. 1), we run experiments with

separate levels of used information. For the base compar-

ison experiments, we input the basic level of information

that is present in both modalities: pitch, duration and onset.

The advanced level of information for performance includes

dynamics (MIDI velocity) and pedals, while for score in-

cludes the voice index (Sec. 3.1) as well as score markings

such as articulation and dynamics. The results and com-

parison of each level of information, also with respect to

different tasks, will be discussed in Section 4.3.

3.2 Modelling Pipelines

In this work, we evaluate the input representations under the

same training pipeline of different piece-level classification

tasks, as discussed in Section 3.3. We split our training ar-

chitecture into two parts, a front end that projects a window

of musical context into a 64-dimensional embedding, and a

back end that aggregates the embedding for final prediction.

The front end is representation-specific while the back end

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

850

ASAP-performance ASAP-score ATEPP-performance ATEPP-score

ACC F1 ACC F1 ACC F1 ACC F1

Matrix

Resl Chnl

400 On+Fm 0.59±0.04 0.18±0.02 0.59±0.03 0.18±0.01 0.24±0.05 0.20±0.04 0.25±0.02 0.16±0.03

600 On+Fm 0.62±0.06 0.21±0.03 0.61±0.07 0.19±0.02 0.28±0.01 0.22±0.03 0.24±0.02 0.16±0.04

800 Fm 0.62±0.04 0.21±0.02 0.58±0.06 0.18±0.03 0.22±0.03 0.17±0.01 0.22±0.02 0.18±0.03

800 On+Fm 0.63±0.04 0.20±0.01 0.57±0.04 0.18±0.03 0.28±0.02 0.22±0.01 0.22±0.04 0.14±0.02

Sequence

Tokn BPE

MidiLike × 0.53±0.05 0.16±0.02 N/A N/A 0.18±0.04 0.10±0.02 N/A N/A

REMI × 0.51±0.04 0.15±0.02 0.43±0.04 0.14±0.01 0.23±0.04 0.10±0.02 0.23±0.04 0.13±0.02

CP × 0.48±0.02 0.09±0.05 0.45±0.05 0.10±0.01 0.11±0.02 0.09±0.01 0.17±0.06 0.11±0.04

MidiLike 4 0.52±0.04 0.15±0.02 N/A N/A 0.17±0.03 0.12±0.01 N/A N/A

REMI 4 0.51±0.02 0.15±0.01 0.43±0.03 0.13±0.01 0.21±0.01 0.13±0.03 0.23±0.03 0.13±0.01

Graph

Bi-dir Multi-rel

× × 0.56±0.01 0.17±0.02 0.51±0.05 0.16±0.02 0.22±0.02 0.10±0.03 0.23±0.03 0.21±0.05

× ✓ 0.58±0.03 0.19±0.01 0.54±0.05 0.17±0.02 0.27±0.03 0.13±0.02 0.29±0.10 0.18±0.06

✓ ✓ 0.62±0.02 0.21±0.01 0.50±0.04 0.17±0.01 0.23±0.04 0.16±0.03 0.27±0.06 0.22±0.03

Table 1. Composer classification results for all representations, on all target subsets of our datasets on the composer

classification task using only basic level features. For each subset of data, we present the accuracy score and the macro F1

score with 8-fold cross-validation. See Section 4.1 for explanation of the parameters.

rests fixed. For a fair comparison, we ensure that the same

amount of musical context is given for different front ends

to learn. For MIDI performances we fix a window of 60 s,
and for symbolic scores, we choose a window of 120 beats

given that 120 bpm is a common tempo for music.

For the front end, we employ a commonly used architec-

ture for each respective representation domain:

Matrix: Convolutional neural network based on ResNet

[49] blocks with channel numbers adapted to our input.

Sequence: Transformer-encoder [50] front end with po-

sitional encoding. Each layer includes multi-head attention

with 16 heads followed by an Add & Norm layer. For

the combined tokens CPWord we add separate embedding

layers for each token category in the front end.

Graph: Our graph convolution network (GCN) is built

by stacking GraphSAGE blocks [51] followed by a global

mean pooling layer. We experiment with both heteroge-

neous and homogeneous GraphSAGE. Note that a hetero-

geneous network has r times more parameters, where r is

the number of distinct edge relation types.

For the fixed back end, we used a multi-head attention

block with linear projection heads to the desired number of

classes, as shown in Figure 2. To minimize the impact of

model capacity on our comparative discussion, we carried

out an ablation study to understand the size of the architec-

ture proportional to each kind of representation (Sec. 4.2).

3.3 Tasks and Datasets

In this work, we focus on three tasks: composer classifi-

cation, performer classification, and difficulty assessment.

Each one of these tasks is a piece-level task since a label is

attributed per piece. The composer classification consists of

predicting the composer of the piece. The performer clas-

sification involves the prediction of the performer among

a list of predefined performers included in the data source.

Finally, difficulty assessment involves the prediction of a

number between 1-9, with 1 being easy and 9 being hard.

The difficulty labels were assembled from Henle Music. 3

To evaluate the aforementioned tasks, we use two large-

scale collections of Western classical piano music that con-

tain corresponding symbolic scores (MusicXML files) and

performances (MIDI files), ASAP (1067 performances, 245

scores) and ATEPP (11742 performances, 415 scores). Both

datasets contain individual files per movement.

For the composer classification task, we exclude the least

populated composer classes for balance in experiments,

resulting in 10 classes for the ASAP dataset and 9 classes

for the ATEPP dataset. The performer classification task

uses MIDI performances of ATEPP with 20 classes. For

difficulty, given that both ASAP and ATEPP datasets focus

on concert repertoire, the actual classes used range from

difficulty 4-9. 4 For all experiments, we use an eight-fold

cross-validation evaluation where 85% of our data is used

for training and 15% for testing in each fold.

3.4 Training

We performed hyperparameter optimization sweeps to deter-

mine the optimal learning rate and model hyperparameters.

Our convergence criteria include early stopping at the 60

epoch breakpoint with the patience parameter set at 0.005
on the validation accuracy. All our experiments are trained

on a single A5000 GPU, and the best models, training logs,

3 Henle Music difficulty labels, https://www.henle.de/en/
about-us/levels-of-difficulty-piano/

4 The full distribution of the classes for each task is shown in the
supplementary material.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

851

and the code is available in the repository. 5

4. EXPERIMENTS AND RESULTS

To evaluate the different representations we performed three

experiments. Our first experiment focuses on a detailed

comparison of the predictive accuracy of the three represen-

tations/architectures applied to the composer classification

task, since it is the most well-understood task among the

three. The second experiment studies the impact of model

capacity (number of trainable parameters) per representa-

tion. Our last experiment investigates the effect of different

levels of input features (see Section 3.1.4) on the three tasks.

4.1 Representations for Composer Classification

Our first experiment is a comparative analysis of the three

representations on our two datasets, in the domains of both

MIDI performance and MusicXML score with basic level

features. For each representation group we test different

configurations, i.e. for matrix we experiment with the chan-

nel (Chnl) and timestep resolution (Resl), for sequence we

change the tokenization scheme (Tokn) and apply BPE,

and for graph we investigate the effect of homogeneous

or heterogeneous graphs (Multi-rel) and the addition of in-

verse edges (Bi-dir) (see Sec. 3.1). In Table 1, we present

for each data subset the accuracy score and the macro F1

score and their respective standard deviations under 8-fold

cross-validation (see Sec. 3.3).

In terms of observations per representation, the matrix

representation results indicate no significant differences un-

der different experimental configurations. For sequence rep-

resentations, the MIDILike and REMI tokenization schemes

yield comparable performance. However, our experiments

suggest that CPWord is a more challenging representation

to learn in the same setting. Concerning the BPE technique,

no significant difference is observed between results with 4

times the original vocabulary and the non-BPE version.

Our graph-based models exhibit similar performance

regardless of the configuration of the graph edges. In par-

ticular, the effect of reverse edges is not significant, and

homogeneous graph convolution already achieves similar

results to heterogeneous graph convolutional models, which

indicates that implicit structural information contained in

the heterogeneous approach is not strictly necessary for

piece-level classification tasks.

Overall, we observe that three representations show

small performance differences in given experiments, with

the matrix-CNN approach having the overall best metric

across the experiment groups and sequence have the worst.

Finally, we would like to discuss the album effect, which

concerns the tendency of classification models to learn non-

intended features, such as acoustic features in pieces of

the same album [52]. In our case, this effect concerns

different performances of the same piece that may give

away cues for classification. Training with the entire corpus

of performance MIDI, which involves different interpreta-

tions of the same piece, yields an average accuracy of 90%

5 https://github.com/anusfoil/SymRep

Figure 3. Model capacity vs. macro F1 score for each

representation approaches on the ASAP-composer task.

(see supplementary material), which is 30% higher for the

ASAP-perf group. To address this issue, we fix the splits

to only contain unseen pieces in the test set, which reduced

the accuracy score gap between performance and score.

This issue has often been overlooked in literature [53, 54]

and a commonly-used dataset split is not piece-specific [16].

Given the recent development of large score-performance

datasets, we wish to establish a scientifically correct evalua-

tion split taking into consideration the piece effect.

4.2 Complexity

In our second experiment we investigate the impact of

model capacity for each representation on the composer

classification task using the ASAP dataset. We experiment

with different hidden dimensions h and the number of lay-

ers N on each architecture corresponding to each of the

three representations (Sec 3.2), and show our results in Fig-

ure 3. Overall, we observe that the GCN achieves its best

performance using 1.3M parameters, while architectures for

matrix and sequence achieve a similar accuracy at around

three times the number of parameters.

Another observation concerns the use of large models

for piece-level classification tasks on symbolic data. Large

convolution models such as ResNet-18/34/50 [16] are sub-

stantially over-parametrized, as our results suggest we can

achieve similar results using a reduced version of ResNet-8,

using less than half the parameters of the smallest used

ResNet architecture. Similar observations can be made for

transformers, where scaling the model beyond 4.3M param-

eters does not further improve the performance. Our most

efficient transformer encoder consists of 4 layers of atten-

tion modules with a hidden dimension of 256, significantly

less than transformers used in previous related work [33].

Finally, we note one aspect of our results after scaling

our graph network. While oversmoothing [37] (features

of graph vertices converging to the same value) is a well-

known challenge to train deep GCN, our best performing

model is a relatively deep and narrow network consisting

of 5 layers with a hidden dimension of 64. One possible

interpretation is that convergence of node features does not

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

852

Composer Performer Difficulty

perf score perf (ATEPP) perf score

Matrix

basic feats 0.625 0.572 0.364 0.403 0.420

advanced feats 0.618 0.577 0.342 0.411 0.415

Sequence

basic feats 0.530 0.447 0.287 0.438 0.368

advanced feats 0.513 0.393 0.292 0.426 0.349

Graph

basic feats 0.607 0.545 0.305 0.373 0.361

advanced feats 0.598 0.697 0.323 0.356 0.405

Table 2. Accuracy of three identification tasks on the ASAP

dataset, with basic or higher-level features.

complicate training in the graph-level classification context.

4.3 Comparison of Feature Levels and Tasks

As discussed in Section 3.1.4, we are also interested in

understanding the impact of different levels of features on

the three classification tasks. With this motivation, we

performed our third set of experiments, where we adopted

the best configuration of models explored in experiment 1

(see Section 4.1). We report the accuracy results in Table 2.

Our results indicate that MIDI performances and Mu-

sicXML scores have similar capabilities for distinguishing

composers and difficulty. Furthermore, matrix and sequence

approaches exhibit better results when learning with perfor-

mances compared to scores. For the difficulty classification

task, in particular, all three representations achieved approx-

imately 40% accuracy on the 6 difficulty levels. Performer

classification is more challenging since the difference lies in

the timing nuances and dynamic changes instead of the pitch

information, which are more prominent in our input rep-

resentations. In the 20-way classification, our approaches

generally achieved around 30% accuracy.

Our observations suggest that the addition of advanced

features has a variable impact on the representations. Inter-

estingly, the addition of advanced features does not improve

the training from sequence representations in most experi-

ments, which can possibly be explained by the increase in

vocabulary size and relative sparsity of such information.

Graph structures benefit from the addition of voice edges,

especially in the representation of scores, where the perfor-

mance boosts for both composer and difficulty classification.

Notably, the graph-score with advanced features con-

figuration achieved the best result in score-based composer

classification, when jointly compared with Table 1.

4.4 Transformer vs. GNN: Are We Learning the Same

Set of Musical Edges?

A transformer can be seen as a special case of Graph Neural

Networks [38]. Assuming a fully connected graph where

vertices are tokens in a sequence, we can draw parallels be-

tween a GCN and learned attention in a transformer block.

Therefore, we examine attention weights between

NoteOn tokens in an effort to understand how our graph

representation of the score relates to the sequence-based

representation. For all pairs of NoteOn tokens from music

Figure 4. Visualization of graph edges (all edge types

aggregated) and the attention among NoteOn tokens for

the first measures of Mozart Piano Sonata No.12, 1st mvt.

sequences, we output their attention values and compute

the correlation with the aggregated adjacency matrix (with

all musical edges constructed in Sec. 3.1). Across the test

set of ASAP composer classification on scores, there is a

weak positive correlation, with Pearson’s value of 0.212.

In Figure 4, we visualize two measures of music with its

constructed graph edges, and the attention across NoteOn

tokens. We can observe some structural similarities, espe-

cially the overlap pattern in both measures, but overall the

learned attention spans are much more global while graph

edges connect nodes within a local range.

5. DISCUSSION AND FUTURE WORK

In this paper, we presented a series of systematic experi-

ments to investigate the impact of symbolic representations

for three piece-level tasks. In terms of simple classifica-

tion performance, we found that for a given task, different

representations showed small performance differences, but

no clear pattern of superiority emerged. The matrix results

were marginally better on average, and usually more robust

to hyper-parameter changes. More advanced features were

beneficial only for certain tasks and representations.

The graph representation, as the newest and least ex-

plored among the three approaches, exhibits promising

performance, while being more light-weight (in terms of

required model complexity – cf. Fig. 3). We observe that

homogeneous graphs produce comparable results to het-

erogeneous graphs for our piece-level classification tasks,

and deep GCNs perform better despite over-smoothing. As

graphs are arguably a more natural representation for struc-

tured artifacts such as musical scores, we believe that they

should merit more detailed studies in the future.

Our model complexity experiments demonstrated that

commonly used architectures in the literature are larger than

necessary for our tasks, as the same results can be achieved

with smaller architectures (Section 4.2). Furthermore, we

discussed the album effect in score-performance datasets,

where multiple interpretations of the same composition

may cause information leakage. Our results indicate the

profound impact of the album effect, and we introduce new

evaluation splits to guard against this effect.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

853

6. ACKNOWLEDGEMENTS

This work is supported by the UKRI Centre for Doctoral

Training in Artificial Intelligence and Music, funded by UK

Research and Innovation [grant number EP/S022694/1],

also by the European Research Council (ERC) under the

EU’s Horizon 2020 research and innovation programme,

grant agreement No. 101019375 (Whither Music?).

7. REFERENCES

[1] L. Liu, Q. Kong, V. Morfi, and E. Benetos, “Perfor-

mance MIDI-to-score conversion by neural beat track-

ing,” in Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR), 2022.

[2] D. Temperley, “A unified probabilistic model for

polyphonic music analysis,” Journal of New Music

Research, vol. 38, no. 1, pp. 3–18, 2009. [Online].

Available: https://doi.org/10.1080/09298210902928495

[3] D. Temperley, The Cognition of Basic Musical Struc-

tures. MIT Press, 2004.

[4] H. Zhang, J. Tang, S. Rafee, S. Dixon, and G. Fazekas,

“ATEPP: A Dataset of Automatically Transcribed Ex-

pressive Piano Performance,” in Proceedings of the

International Society for Music Information Retrieval

Conference (ISMIR), 2022.

[5] S. D. Peter, C. E. Cancino-Chacón, F. Foscarin, A. P.

McLeod, F. Henkel, E. Karystinaios, and G. Widmer,

“Automatic note-level score-to-performance alignments

in the ASAP dataset,” Transactions of International So-

ciety for Music Information Retrieval (in press), 2023.

[6] F. Foscarin, E. Karystinaios, S. D. Peter, C. Cancino-

Chacón, M. Grachten, and G. Widmer, “The match

file format: Encoding alignments between scores and

performances,” in Proceedings of the Music Encoding

Conference (MEC), 2022.

[7] I. Xenakis, Formalized Music: Thoughts and Mathemat-

ics in Composition, 1992.

[8] M. Harris, A. Smaill, and G. Wiggins, “Repre-

senting Music Symbolically,” in IX Colloquio di

Informatica Musicale (Venice), 1991. [Online]. Avail-

able: http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.43.473

[9] M. Babbit, “The use of computers in musicological

research,” Perspectives of New Music, vol. 3, no. 2, pp.

74–83, 1965.

[10] G. Wiggins, E. Miranda, A. Smaill, and M. Harris, “A

Framework for the Evaluation of Music Representation

Systems,” Computer Music Journal, vol. 17, no. 3, pp.

31–42, 1993. [Online]. Available: https://about.jstor.

org/terms

[11] C. Walder, “Modelling symbolic music: Beyond the

piano roll,” in Journal of Machine Learning Research,

vol. 63, 2016, pp. 174–189.

[12] M. Prang, “Representation learning for symbolic music,”

Ph.D. dissertation, IRCAM, 2021. [Online]. Available:

https://hal.archives-ouvertes.fr/tel-03329980

[13] E. Benetos, A. Klapuri, and S. Dixon, “Score-informed

transcription for automatic piano tutoring,” in European

Signal Processing Conference (EUSIPCO), 2012.

[Online]. Available: http://c4dm.eecs.qmul.ac.uk/rdr/

[14] Q. Kong, B. Li, X. Song, Y. Wan, and Y. Wang, “High-

Resolution Piano Transcription with Pedals by Regress-

ing Onset and Offset Times,” IEEE/ACM Transactions

on Audio Speech and Language Processing, vol. 29, pp.

3707–3717, 2021.

[15] Y. Ghatas, M. Fayek, and M. Hadhoud, “A hybrid deep

learning approach for musical difficulty estimation of pi-

ano symbolic music,” Alexandria Engineering Journal,

vol. 61, no. 12, pp. 10 183–10 196, 2022.

[16] S. Kim, H. Lee, S. Park, J. Lee, and K. Choi,

“Deep Composer Classification Using Symbolic

Representation,” in International Society for Music

Information Retrieval (ISMIR) Late Breaking Demo

(LBD), 2020. [Online]. Available: http://arxiv.org/abs/

2010.00823

[17] G. Velarde, T. Weyde, C. E. Cancino-Chacón,

D. Meredith, and M. Grachten, “Composer recognition

based on 2D-filtered piano-rolls,” in Proceedings

of the International Society for Music Information

Retrieval Conference (ISMIR), 2016. [Online].

Available: https://www.semanticscholar.org/paper/

Composer-Recognition-Based-on-2D-Filtered-Velarde-Weyde/

2ee8df37e3f5363c573b2aeed2243034ea638f71

[18] F. Foscarin, K. Hoedt, V. Praher, A. Flexer,

and G. Widmer, “Concept-Based Techniques for

"Musicologist-friendly" Explanations in a Deep Music

Classifier,” in Proceedings of the International Society

for Music Information Retrieval Conference (ISMIR),

2022. [Online]. Available: http://arxiv.org/abs/2208.

12485

[19] H. W. Dong, W. Y. Hsiao, L. C. Yang, and Y. H.

Yang, “MuseGAN: Multi-track sequential generative

adversarial networks for symbolic music generation

and accompaniment,” in Proceedings of the 32nd AAAI

Conference on Artificial Intelligence, 2018. [Online].

Available: https://salu133445.github.io/musegan/

[20] S. van Herwaarden, M. Grachten, W. de Haas, and

W. Bas de Haas, “Predicting expressive dynamics in

piano performances using neural networks,” in Proceed-

ings of the International Society for Music Information

Retrieval Conference (ISMIR), 2014.

[21] J.-P. Briot, G. Hadjeres, and F.-D. Pachet, Deep

Learning Techniques for Music Generation – A Survey,

2017. [Online]. Available: http://arxiv.org/abs/1709.

01620

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

854

[22] D. Conklin and I. H. Witten, “Multiple viewpoint

systems for music prediction,” Journal of New Music

Research, vol. 24, no. 1, pp. 51–73, 1995. [Online].

Available: https://doi.org/10.1080/09298219508570672

[23] D. Conklin, “Multiple viewpoint systems for music

classification,” Journal of New Music Research,

vol. 42, no. 1, pp. 19–26, 2013. [Online]. Available:

https://doi.org/10.1080/09298215.2013.776611

[24] R. P. Whorley and D. Conklin, “Music generation

from statistical models of harmony,” Journal of New

Music Research, vol. 45, no. 2, pp. 160–183, 2016.

[Online]. Available: https://doi.org/10.1080/09298215.

2016.1173708

[25] D. Conklin, “Chord sequence generation with semiotic

patterns,” Journal of Mathematics and Music, vol. 10,

no. 2, pp. 92–106, 2016. [Online]. Available:

https://doi.org/10.1080/17459737.2016.1188172

[26] M. T. Pearce, “Statistical learning and probabilistic

prediction in music cognition: Mechanisms of stylistic

enculturation,” Annals of the New York Academy of

Sciences, vol. 1423, no. 1, pp. 378–395, 2018. [Online].

Available: https://nyaspubs.onlinelibrary.wiley.com/

doi/abs/10.1111/nyas.13654

[27] M. Pearce, “The Construction and Evaluation of Statis-

tical Models of Melodic Structure in Music Perception

and Composition,” Ph.D. dissertation, City University

of London, UK, 2005.

[28] D. Conklin and I. H. Witten, “Multiple Viewpoint Sys-

tems for Music Prediction,” Journal of New Music Re-

search, vol. 24, no. 1, pp. 51–73, 1995.

[29] J. Liu, Y. Dong, Z. Cheng, X. Zhang, X. Li, F. Yu,

and M. Sun, “Symphony Generation with Permutation

Invariant Language Model,” in Proceedings of the

International Society for Music Information Retrieval

Conference (ISMIR), 2022. [Online]. Available: http:

//arxiv.org/abs/2205.05448

[30] D. von Rütte, L. Biggio, Y. Kilcher, and T. Hofmann,

“FIGARO: Generating Symbolic Music with Fine-

Grained Artistic Control,” in Proceedings of the

International Conference on Learning Representations

(ICLR), 2023. [Online]. Available: http://arxiv.org/abs/

2201.10936

[31] M. Keller, G. Loiseau, and L. Bigo, “What

Musical Knowledge Does Self-Attention Learn?” in

Proceedings of the 2nd Workshop on NLP for Music and

Spoken Audio (NLP4MusA), 2021, pp. 6–10. [Online].

Available: https://aclanthology.org/2021.nlp4musa-1.2

[32] M. Zeng, X. Tan, R. Wang, Z. Ju, T. Qin, and T. Y.

Liu, “MusicBERT: Symbolic Music Understanding

with Large-Scale Pre-Training,” in Findings of the As-

sociation for Computational Linguistics: ACL-IJCNLP,

2021.

[33] N. Fradet, J.-P. Briot, F. Chhel, A. E. F. Seghrouchni,

and N. Gutowski, “Byte Pair Encoding for Symbolic

Music,” 2023. [Online]. Available: http://arxiv.org/abs/

2301.11975

[34] D. Jeong, T. Kwon, Y. Kim, and J. Nam, “Graph neural

network for music score data and modeling expressive

piano performance,” in International Conference on

Machine Learning. PMLR, 2019, pp. 3060–3070.

[35] E. Karystinaios and G. Widmer, “Cadence detection in

symbolic classical music using graph neural networks,”

in Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), 2022.

[36] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, “A

survey of heterogeneous information network analysis,”

IEEE Transactions on Knowledge and Data Engineer-

ing, vol. 29, no. 1, pp. 17–37, 2016.

[37] G. Li, M. Muller, A. Thabet, and B. Ghanem,

“DeepGCNs: Can GCNs go as deep as CNNs?” in

Proceedings of the IEEE International Conference

on Computer Vision, 2019. [Online]. Available:

https://sites.google.com/view/deep-gcns

[38] P. Veličković, “Everything is Connected: Graph Neural

Networks,” Artificial Intelligence (AI) Methodology

in Structural Biology, 2023. [Online]. Available:

http://arxiv.org/abs/2301.08210

[39] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Simon,

C. Raffel, J. Engel, S. Oore, and D. Eck, “Onsets and

frames: Dual-objective piano transcription,” in Proceed-

ings of the International Society for Music Information

Retrieval Conference (ISMIR), 2018, pp. 50–57.

[40] S. Oore, I. Simon, S. Dieleman, D. Eck, and K. Si-

monyan, “This time with feeling: learning expressive

musical performance,” Neural Computing and Applica-

tions, vol. 32, no. 4, pp. 955–967, 2018.

[41] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer,

I. Simon, C. Hawthorne, A. M. Dai, M. D. Hoffman,

M. Dinculescu, and D. Eck, “Music Transformer,”

in Proceedings of the International Conference of

Learning Representations (ICLR), 2019. [Online].

Available: http://arxiv.org/abs/1809.04281

[42] Y. S. Huang and Y. H. Yang, “Pop Music Transformer:

Beat-based Modeling and Generation of Expressive Pop

Piano Compositions,” in Proceedings of the 28th ACM

International Conference on Multimedia, 2020.

[43] W.-Y. Hsiao, J.-Y. Liu, Y.-C. Yeh, and Y.-H. Yang,

“Compound Word Transformer: Learning to Compose

Full-Song Music over Dynamic Directed Hypergraphs,”

in Proceedings of the 35th AAAI Conference on Artifi-

cial Intelligence, 2021.

[44] N. Fradet, J.-P. Briot, F. Chhel, A. El Fallah

Seghrouchni, and N. Gutowski, “Miditok: a Python

Package for Midi File Tokenization,” in International

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

855

Society for Music Information Retrieval (ISMIR) Late

Breaking Demo (LBD), 2021.

[45] W. Goebl, “Melody lead in piano performance:

Expressive device or artifact?” The Journal of the

Acoustical Society of America, vol. 110, p. 641, 2001.

[Online]. Available: https://asa.scitation.org/doi/10.

1121/1.1376133

[46] C. Cancino-Chacón, S. D. Peter, E. Karystinaios, F. Fos-

carin, M. Grachten, and G. Widmer, “Partitura: A

Python package for symbolic music processing,” in Pro-

ceedings of the Music Encoding Conference (MEC),

2022.

[47] C. Cancino-Chacón, S. D. Peter, E. Karystinaios,

F. Foscarin, M. Grachten, and G. Widmer, “Partitura:

A Python Package for Symbolic Music Processing,”

pp. 1–9, 2022. [Online]. Available: http://arxiv.org/abs/

2206.01071

[48] C. E. Cancino-Chacón, M. Grachten, W. Goebl, and

G. Widmer, “Computational Models of Expressive Mu-

sic Performance: A Comprehensive and Critical Re-

view,” Frontiers in Digital Humanities, vol. 5, no. Octo-

ber, pp. 1–23, 2018.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual

learning for image recognition,” in Proceedings of the

IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,

“Attention is all you need,” in Proceedings of the 31st

International Conference on Neural Information Pro-

cessing Systems, 2017.

[51] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive

Representation Learning on Large Graphs,” in Proceed-

ings of the 31st International Conference on Neural

Information Processing Systems, 2017.

[52] A. Flexer, “A closer look on artist filters for musical

genre classification,” in Proceedings of the International

Society for Music Information Retrieval Conference

(ISMIR), 2007.

[53] G. Micchi, “A neural network for composer classifica-

tion,” in Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR) Late-

Breading Demo (LBD), 2018.

[54] Q. Kong, K. Choi, and Y. Wang, “Large-Scale MIDI-

Based Composer Classification,” in arXiv, 2020.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

856

8. APPENDIX

8.1 Album effect

As mentioned in the main paper Section 4, the Album Effect

remains a non-trivial issue in similar classification tasks.

Here we present in Table 4 the same content as the original

table (Table 1) from the paper which contains results from

the experiment that is trained on the entire performance

corpus with overlapping interpretations. Training under this

non-piece-specific split, we achieved comparable accuracy

(93%) with the literature [16].

8.2 Complexity

8.2.1 Memory

Given that the same amount of music context is input into

the models, we are interested in understanding the memory

efficiency of the representations. We used the native numpy

and cuda functions to monitor the memory of data and

memory changes during training.

In terms the representation of a single piece of data, se-

quence is the most compact one while matrix takes 70×
more space, given that a lot of redundant pixels are taken

in the 2D representation. The size of graph varies depend-

ing on the number of nodes and edges, but overall it is in

between that of the matrix and sequence.

However, during training we can observe that the se-

quence is the least memory-efficient representation during

training, and it takes 30× compares to the memory usage

of matrix and graphs. Given the quadratic complexity of

transformer-like architectures, the training memory needed

is one of the major limitation of sequence compared to the

other representations.

KB / seg KB / piece Training step (MB)

Mtr 819.2 5129.6 ± 3332.7 185.9 ± 105.9

Seq 12.8 77.8 ± 56.7 5548.9 ± 1736.2

Gph 100.5 ± 57.3 610.9 ± 300.0 125.2 ± 103.4

Table 3. Size estimation of each representation with basic

level features from ASAP-perf data. We include the average

size per segment (60s), average size per piece (as piece have

different length), as well as the average allocated memory

increase during each training step with a batch size of 1.

8.2.2 Convergence epochs

During training, we also observed a difference in the time

it takes the models to convergence, given the 60 epochs

convergence criteria defined in Sec 3.4. We first performed

learning rate search using pytorch lightning’s learning rate

finder. Under the suggested learning rate, among different

ASAP-perf experiment of composer classification, the

matrix have on average 143.0±24.7 epochs to converge, the

sequence and the graph have 132.0±31.1 and 262.0±55.7

epochs. During training, the graph models have relatively

slower learning progress.

8.3 Dataset class distributions

We present our dataset class distribution for each task in the

Table 8.4.

8.4 Silence and voice edges

Besides the onset, consecutive and overlap edges in Sec 3.1,

we also add optional silence edges (edges that bridge over si-

lence) to ensure a connected graph. A silence edge Esilence

is added between a node that’s not connected by any con-

secutive edge and the time-wise closest node before it. The

silence edge doesn’t carry much music semantic meaning,

and its main purpose is to prevent the disjoint subgraphs

formed by distinct music sections, in which stops informa-

tion flow in training.

In the advanced representation of score graph, we input

the voicing information as voice edges. Given that we can’t

guarantee the consistency of voice annotation in MusicXML

scores (as they are mostly labeled for visual purposes like

beaming), we limit the voice edge connection within a

measure: If two notes are labelled with the same voice, then

they are connected by a voice edge Evoice.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

857

ASAP-performance ASAP-score ATEPP-performance ATEPP-score

ACC F1 ACC F1 ACC F1 ACC F1

Matrix

Resl Chnl

400 On+Fm 0.926±0.02 0.796±0.06 0.598±0.03 0.177±0.01 0.905±0.04 0.796±0.03 0.246±0.02 0.156±0.03

600 On+Fm 0.931±0.01 0.800±0.07 0.613±0.07 0.186±0.02 0.930±0.05 0.818±0.03 0.238±0.02 0.156±0.04

800 Fm 0.925±0.02 0.723±0.11 0.583±0.06 0.182±0.03 0.891±0.02 0.737±0.02 0.221±0.02 0.181±0.03

800 On+Fm 0.926±0.02 0.812±0.05 0.572±0.04 0.185±0.03 0.932±0.03 0.832±0.01 0.225±0.04 0.138±0.02

Sequence

Tokn BPE

MidiLike × 0.860±0.03 0.674±0.11 N/A N/A 0.926±0.01 0.769±0.01 N/A N/A

REMI × 0.783±0.04 0.521±0.05 0.431±0.04 0.138±0.01 0.910±0.01 0.729±0.02 0.229±0.04 0.129±0.02

CP × 0.679±0.08 0.331±0.06 0.447±0.05 0.099±0.01 0.864±0.02 0.556±0.01 0.171±0.06 0.107±0.04

MidiLike 4 0.905±0.02 0.727±0.06 N/A N/A 0.895±0.01 0.691±0.01 N/A N/A

REMI 4 0.862±0.01 0.692±0.07 0.432±0.03 0.132±0.01 0.826±0.04 0.529±0.03 0.234±0.03 0.125±0.01

Graph

Bi-dir Multi-rel

× × 0.768±0.03 0.500±0.08 0.509±0.05 0.163±0.02 0.788±0.03 0.501±0.06 0.226±0.03 0.205±0.05

× ✓ 0.861±0.03 0.763±0.03 0.545±0.05 0.174±0.02 0.928±0.01 0.781±0.03 0.289±0.10 0.176±0.06

✓ ✓ 0.833±0.03 0.703±0.11 0.500±0.04 0.173±0.01 0.897±0.01 0.767±0.02 0.271±0.06 0.217±0.03

Table 4. Base experiment composer classification results with the entire performance MIDI corpus and no piece-specific

split.

ASAP composer ATEPP composer ATEPP performer ASAP difficulty

Beethoven 195 Beethoven 3033 Richter 1581 9 164

Bach 163 Chopin 1739 Ashkenazy 1188 8 176

Chopin 162 Mozart 653 Arrau 833 7 132

Liszt 67 Schubert 264 Brendel 743 6 150

Schubert 55 Debussy 254 Kempff 609 5 56

Schumann 26 Schumann 243 Barenboim 603 4 23

Haydn 23 Bach 231 Schiff 595

Mozart 10 Ravel 169 Horowitz 576

Scriabin 9 Liszt 122 Gulda 459

Ravel 9 Gieseking 362

Gould 326

Gilels 322

Perahia 288

Pollini 256

Argerich 240

Schnabel 240

François 234

Uchida 210

Casadesus 164

Lugansky 125

Table 5. Dataset class distribution for the tasks. The performer task is in regards to the distribution of the performed MIDI,

and the other three columns are in regards to the MusicXML score.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

858

